
Z. Li and F. Ye (2023) “An Enhanced Euler Characteristic of Sutured Instanton Homology,”
International Mathematics Research Notices, Vol. 00, No. 00, pp. 1–64
https://doi.org/10.1093/imrn/rnad066

An Enhanced Euler Characteristic of Sutured Instanton
Homology

Zhenkun Li1,∗ and Fan Ye2

1Department of Mathematics, Stanford University, 450 Jane Stanford
way, Stanford, CA 94305, USA and 2Department of Mathematics, Harvard
University, 1 Oxford Street, Cambridge, MA 02138, USA

∗Correspondence to be sent to: e-mail: zhenkun@stanford.edu

For a balanced sutured manifold (M, γ ), we construct a decomposition of SHI(M, γ ) with

respect to torsions in H = H1(M;Z), which generalizes the decomposition of I�(Y) in

a previous work of the authors. This decomposition can be regarded as a candidate

for the counterpart of the torsion spinc decompositions in SFH(M, γ ). Based on this

decomposition, we define an enhanced Euler characteristic χen(SHI(M, γ )) ∈ Z[H]/ ±
H and prove that χen(SHI(M, γ )) = χ(SFH(M, γ )). This provides a better lower bound

on dim
C

SHI(M, γ ) than the graded Euler characteristic χgr(SHI(M, γ )). As applications,

we prove instanton knot homology detects the unknot in any instanton L-space and

show that the conjecture KHI(Y, K) ∼= ĤFK(Y, K) holds for all (1, 1)-L-space knots and

constrained knots in lens spaces, which include all torus knots and many hyperbolic

knots in lens spaces.

1 Introduction

Sutured instanton Floer homology was introduced by Kronheimer and Mrowka in

[36]. It combines instanton Floer homology with sutured manifold theory and has

become a powerful tool since then. In [41], Ghosh and the first author constructed a

decomposition of the sutured instanton Floer homology SHI(M, γ ) of a balanced sutured

manifold with respect to the group (H2(M, ∂M;Z))∗ ∼= H1(M;Z)/Tors. More precisely, a
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2 Z. Li and F. Ye

basis of H2(M, ∂M;Z) induces a multi-grading on SHI(M, γ ), which can be identified

with the group H1(M;Z)/Tors. In [42], the authors of the current paper studied the Euler

characteristics of this decomposition of SHI(M, γ ) and related it to the Euler character-

istic of SFH(M, γ ), which is known as the sutured Floer homology introduced by Juhász,

and whose Euler characteristic has been understood by work of Friedle, Juhász, and

Rasmussen in [18]. The study of Euler characteristics was further used by the author to

compute the instanton Floer homology of some families of (1, 1)-knots in a general lens

space and was recently further utilized by Xie and Zhang [64] to prove that links in S3

all admit irreducible SU(2) representations except for connected sums of Hopf links.

However, only having the decomposition of SHI(M, γ ) along the group H1(M;Z)/

Tors is not fully satisfactory for the following two reasons.

(1) Among all known Floer homology theories for sutured manifolds, we have

known that sutured monopole Floer homology is isomorphic to sutured Floer

homology by the work of Lekili [39] and Baldwin and Sivek [11], and it is

conjectured that the sutured instanton Floer homology is also isomorphic to

sutured Floer homology by Kronheimer and Mrowka [36]. However, sutured

Floer homology decomposes along spinc structures and, in particular, the

first Chern classes of torsion spinc structures have Poincaré dual in the

torsion part of the group H1(M;Z), so there should be some corresponding

decomposition of sutured instanton Floer homology.

(2) The original decomposition along H1(M;Z)/Tors collapses all torsion parts

into a single summand of SHI(M, γ ), and some information may lost in this

collision; see Example 1.4.

In this paper, in order to solve this problem coming from collapsing torsion

parts, we obtain the following.

Theorem 1.1 (Main theorem). Suppose (M, γ ) is a balanced sutured manifold and H =
H1(M;Z). Then there is a (possibly noncanonical) decomposition

SHI(M, γ ) =
⊕
h∈H

SHI(M, γ , h).

This decomposition depends on some auxiliary choices. In particular, it is defined up to

a global shift of H. We define the enhanced Euler characteristic of SHI by

χen(SHI(M, γ )) :=
∑
h∈H

χ(SHI(M, γ , h)) · h ∈ Z[H]/ ± H.
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An Enhanced Euler Characteristic 3

Then we have

χen(SHI(M, γ )) = χ(SFH(M, γ )) ∈ Z[H]/ ± H. (1.1)

The similar results also hold for SHM(M, γ ).

Remark 1.2. If H1(M;Z) has no torsion, then the decomposition in Theorem 1.1 is

just induced by the multi-grading mentioned above and Equation (1.1) reduces to [42,

Theorem 1.2]. By results in [18], we have χ(SFH(M, γ )) = τ(M, γ ), where τ(M, γ ) is a

(Turaev-type) torsion element that can be calculated by Fox calculus. In particular,

if ∂M consists of tori and γ consists of two parallel copies of a curve mi with

opposite orientations on each boundary component, by [18, Proof of Lemma 6.1] and

[57, Proposition 2.1], we have

τ(M, γ ) = τ(M) ·
∏

i

([mi] − 1),

where τ(M) is the Turaev torsion of M [60].

Though the decomposition in Theorem 1.1 has not been proved to be canonical,

we expect it to be well-defined up to a global grading shift of H. The following

theorem indicates this decomposition is a candidate for the counterpart of the spinc

decomposition. The proof is essentially due to [11, 39].

Theorem 1.3. Suppose (M, γ ) is a balanced sutured manifold. Then there is a spinc

structure s0 ∈ Spinc(M, γ ) such that for any s ∈ Spinc(M, γ ), we have an isomorphism

SHM(M, γ , PD(s − s0)) ∼= SFH(M, γ , s) ⊗ �,

where PD : H2(M, ∂M;Z) → H1(M;Z) is the Poincaré duality map and � is the

Novikov ring.

For an element in a group ring Z[G]

x =
∑
g∈G

cg · g, for cg ∈ Z,

define

‖x‖ =
∑
g∈G

|cg|.
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4 Z. Li and F. Ye

This definition is still well-defined for an element in Z[G]/±G. By construction of Euler

characteristics, we have

dim
C

SHI(M, γ ) ≥ ‖χen(SHI(M, γ ))‖ ≥ ‖χgr(SHI(M, γ ))‖. (1.2)

To provide an example that the second inequality in (1.2) is not always sharp, and hence

χen contains more information than χgr, we consider an example from constrained knots

studied by the second author [66].

Example 1.4. Consider the 1-cusped hyperbolic manifold M = m006 in the Snappy

program [16]. We have H1(M;Z) ∼= Z ⊕ Z5
∼= Z〈t, r〉/(5r). By the list of constrained knots

in [65], Dehn filling along the slope (1, 0) (in the basis from Snappy) gives the lens space

L(5, 3) and the core knot is the constrained knot C(5, 3, 4, 3, 1). Suppose γ consists of two

parallel copies of the curve of slope (1, 0). Then we have

τ(M, γ ) = 1 + r + t + rt + r2t − r3t − r4t + rt2 + r2t2,

and

τ(M, γ )|r=1 = 1 + 1 + t + t + t − t − t + t2 + t2 = 2 + t + 2t2.

Hence, we have

‖χen(SHI(M, γ ))‖ = ‖τ(M, γ )‖ = 9 and ‖χgr(SHI(M, γ ))‖ = ‖τ(M, γ )|r=1‖ = 5.

Suppose K is a knot in a closed 3-manifold Y. Let

Y(1) := Y\B3 and Y(K) := Y\intN(K).

Suppose δ is a simple closed curve on ∂Y(K) ∼= S2, and suppose γK is two copies of the

meridian of K with opposite orientations. In Heegaard Floer theory, we have

SFH(Y(1), δ) ∼= ĤF(Y) and SFH(M, γK) ∼= ĤFK(Y, K),

where ĤF(Y) and ĤFK are the hat versions of the Heegaard Floer homology and the

knot Floer homology defined by Ozsváth and Szabó [48, 50, 56]. In instanton theory,

Kronheimer and Mrowka [36] defined

I�(Y) := SHI(Y(1), δ) and KHI(Y, K) := SHI(Y(K), γK).
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An Enhanced Euler Characteristic 5

An application of Theorem 1.1 is the following unknot detection result in

rational homology spheres.

Theorem 1.5. Suppose K is a null-homologous knot in a rational homology sphere Y.

If

dimC I�(Y) = |H1(Y;Z)|, (1.3)

then K is the unknot that is, it bounds a disk in Y, if and only if

dimC KHI(Y, K) = dimC I�(Y). (1.4)

Remark 1.6. Since instanton theory is closely related to SU(2) representations of

fundamental groups, Theorem 1.5 may be used to show that for any nontrivial null-

homologous knot K in a rational homology sphere Y, the fundamental group π1(Y(K))

admits an irreducible representation in SU(2) such that the meridian of K is mapped

to a traceless element in SU(2). However, the authors do not know how to prove the

nondegeneracy results similar to [10, Section 4.1] for generators of KHI(Y, K).

Remark 1.7. Rational homology spheres that satisfy (1.3) are called instanton L-

spaces. Theorem 1.5 cannot be generalized to knots that are not null-homologous

because simple knots in lens spaces also satisfy (1.4) [43, Proposition 1.9]. It is a natural

conjecture that simple knots are the only knots in lens spaces satisfy (1.4) (For Heegaard

Floer theory, see [2, Conjecture 1.5]).

Following the similar strategy, we can prove the following theorem for knots

whose KHI have small dimensions.

Theorem 1.8. Suppose K is a null-homologous knot in a rational homology sphere Y.

If

dimC KHI(Y, K) = dimC I�(Y) + 2 = |H1(Y;Z)| + 2, (1.5)

then K must be a genus-one-fibred knot.

Remark 1.9. The only knots in S3 satisfying (1.5) are the trefoil and its mirror. Hence,

Theorem 1.8 is a generalization of the trefoil detection result in S3 [12, Theorem 1.6].

Both proofs are based on the nonvanishing result on the “next-to-top” grading [12,

Theorem 1.7] for fibred knots.
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6 Z. Li and F. Ye

Remark 1.10. For a knot K in an instanton L-space Y with

dimC KHI(Y, K) = dimC I�(Y) + 4 = |H1(Y;Z)| + 4,

we may still conclude K is fibred using the same strategy. However, it is impossible to

pin down the genus because there are at least two knots in S3 with different genera:

the figure-8 knot with genus one and the T(2,5) torus knot with genus two. Recently,

there are many new results [5, 45, 46] about the Khovanov homology and the knot Floer

homology of T(2,5). It is an interesting question that if these results can be applied to

instanton knot homology.

Remark 1.11. We can prove similar detection results in Heegaarders Floer theory; see

Section 6.

Another application of Theorem 1.1 is to compute KHI(Y, K) for all (1, 1)-L-space

knots and constrained knots in lens spaces. The calculation is based on the following

theorem.

Theorem 1.12 ([43, Theorem 1.6], see also [6, Theorem 1.1]). Suppose K ⊂ Y is a (1, 1)-

knot in a lens space (including S3). Then we have

dimCKHI(Y, K) ≤ dimF2
ĤFK(Y, K).

Corollary 1.13. Suppose K ⊂ Y is a (1, 1)-knot in a lens space (including S3). If K is

either a L-space knot, or a constrained knot, then

dimCKHI(Y, K) = dimF2
ĤFK(Y, K).

Proof. The theorem follows from comparing the upper bound from Theorem 1.12 and

the lower bound from ‖χen(KHI(Y, K))‖. By [57, Lemma 3.2] and [24, Theorem 2.2] for

L-space knots, and by [66, Section 4] for constrained knots, the upper bound matches

the lower bound. �

Remark 1.14. In the authors’ previous work [42, Corollary 1.9], we proved Corollary

1.13 in the case where H1(Y(K);Z) ∼= Z. This is because the lower bound from

‖χgr(KHI(Y, K))‖ may not equal to the upper bound in [43] when H1(Y\intN(K);Z) has

torsions (cf. Example 1.4).
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An Enhanced Euler Characteristic 7

Remark 1.15. The result in Corollary 1.13 can be generalized to other (1, 1)-knot K

whose ĤFK is totally determined by χ(ĤFK(Y, K)), such as (±2, p, q) pretzel knots for

odd integers p and q (cf. [23, Section 5]).

Any lens space Y has a standard Heegaard splitting of genus 1. A knot K in a

lens space Y is called a torus knot if K can be isotoped to lie on the Heegaard torus of

Y. This definition generalizes the usual torus knots in S3. A knot K is called a satellite

knot if Y\intN(K) has an essential torus. A knot K is called hyperbolic if Y\K admits a

hyperbolic metric of finite volume. By Thurston’s Hyperbolization Theorem for Haken

3-manifolds, we have a good classification of knots in lens spaces.

Proposition 1.16 ([62, Proposition 3.1]). Suppose K is a knot in a lens space Y. If Y(K) is

irreducible, then K is either a torus knot, a satellite knot, or a hyperbolic knot.

It is straightforward to check that torus knots are (1, 1)-knots, and their

complements are Seifert fibred spaces.

Proposition 1.17 ([57, Theorem 5.1]). Knots in lens spaces with Seifert fibred comple-

ments are L-space knots.

Combining Proposition 1.17 and Corollary 1.13, we have the following result.

Corollary 1.18. For any torus knot K in a lens space Y, we have

dimCKHI(Y, K) = dimF2
ĤFK(Y, K).

Complements of many constrained knots are orientable hyperbolic 1-cusped

manifolds with simple ideal triangulations. In particular, among 286 orientable 1-

cusped manifolds that have ideal triangulations with at most five ideal tetrahedra, there

are 232 manifolds that are complements of constrained knots. More examples can be

found in [65]. Indeed, [66, Conjecture 2] conjectured that most constrained knots are

hyperbolic knots.

1.1 Organization and sketch of the proofs

Suppose (M, γ ) is a balanced sutured manifold. To sutured instanton and monopole

homology together, we use SHG(M, γ ) to denote both SHI(M, γ ) and SHM(M, γ ) (cf. [21,

Section 2.1], see also [7]). It is a projectively transitive system, where each space in
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8 Z. Li and F. Ye

the system is isomorphic to SHI(M, γ ) (for SHI(M, γ )) and SHM(M, γ ) (for SHM(M, γ )).

Note that it is different from the formal sutured homology SHI(M, γ ) and SHM(M, γ ) for

instanton and monopole theory constructed in [42] because formal sutured homology

corresponds to the untwisted theory in Baldwin and Sivek’s construction [7], where

SHG(M, γ ) corresponds to the twisted theory in [7]. However, we have the equalities

for graded Euler characteristics from [7, Theorem 7.7 and Theorem 9.21]

χgr(SHI(M, γ )) = χgr(SHI(M, γ )) and χgr(SHM(M, γ )) = χgr(SHM(M, γ )).

Hence, the results for graded Euler characteristics of formal sutured homology in [42]

can be applied to SHG(M, γ ). In particular, we have

χgr(SHG(M, γ )) = χgr(SFH(M, γ )). (1.6)

Remark 1.19. In the previous version of this paper, we used the formal sutured

homology to carry out proofs in the paper, but then noticed that some constructions

might involve closures of balanced sutured manifolds of different genera. Moreover, the

proof of the functoriality of contact gluing maps in [40] involves closures obtained from

disconnected auxiliary surfaces, which can only be handled by a genus one version of

Floer’s excision theorem that is available in the twisted theory. Hence, in the current

version, we use the twisted theory SHG(M, γ ), which relates closures of different genera

and closures with possibly disconnected auxiliary surfaces.

In Section 2, we review basic properties of SHG(M, γ ), the gradings on SHG(M, γ )

associated to admissible surfaces, and the maps on SHG(−M, −γ ) associated to contact

handle attachments (called contact gluing maps). Since we will use contact gluing maps

frequently, it is more convenient to consider (−M, −γ ), the sutured manifold with the

reverse orientation. Hence, we state all results with a minus sign.

In Section 3, we generalize the decomposition associated to a rationally null-

homologous knot in [43, Section 4] to a connected rationally null-homologous tangle α,

that is, [α] = 0 ∈ H1(M, ∂M;Q). We write Mα = M\intN(α). Then, by Lemma 3.19, we have

rk
Z

H1(Mα;Z) = rk
Z

H1(M;Z) + 1,

and there is a surjective map

H1(Mα;Z) → H1(Mα;Z)/[mα] ∼= H1(M;Z),
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An Enhanced Euler Characteristic 9

where mα is the meridian of α. Moreover, after picking some suitable α, the pre-

images of some torsions in H1(M;Z) are distinguished in the free part of H1(Mα;Z).

Since the difference in the free part can be detected by the gradings associated to

admissible surfaces, we can decompose SHG(−M, −γ ) by considering direct summands

of SHG(−Mα, −(γ ∪ mα)) in some gradings whose total dimension is the same as that of

SHG(−M, −γ ). The direct sum of these summands are denoted by SHGα(−M, −γ ), which

generalizes I+(−Ŷ, K̂) in [43, Section 4].

The above method can be applied iteratively for a tangle T with more than one

component and finally we can distinguish all torsions in H1(M;Z) by choosing T such

that H1(MT ;Z) is torsion-free (cf. Lemma 3.20). Similarly, we can identify SHG(−M, −γ )

with a direct summand of SHG(−MT , −(γ ∪ mT)), where mT is the union of meridians of

tangle components of T. Since H1(MT ;Z) has no torsion, all torsions that are mixed on

H1(M;Z) can be distinguished on H1(MT ;Z), and this provides the desired decomposition

in Theorem 1.1.

Suppose j∗ is the map on group rings induced by

j : H1(MT ;Z) → H1(M;Z).

Given the construction of SHGT(−M, −γ ), Equation (1.1) reduces to the following

equation

χen(SHG(−M, −γ )) := j∗(χgr(SHGT(−M, −γ ))) = χ(SFH(−M, −γ )). (1.7)

We prove this equation by introducing a decomposition SFHT(−M, −γ ) of SFH(−M, −γ )

similar to SHGT(−M, −γ ). However, the construction of SFH is based on balanced

diagrams of balanced sutured manifolds, which is different from the construction of

SHG by closures. So we have to show that SFH satisfies the similar setups of SHG to

construct SFHT(−M, −γ ). This is the main goal of Section 4, where we collect results for

SFH parallel to SHG, including gradings associated to admissible surfaces, the surgery

exact triangle, the bypass exact triangle, and contact gluing maps.

Since H1(MT ;Z) is torsion-free, we can apply (1.6) to (−MT , −(γ ∪ mT)) to obtain

χgr(SHGT(−M, −γ )) = χgr(SFHT(−M, −γ )) = χ(SFHT(−M, −γ )). (1.8)

By discussion on spinc structures, we show

j∗(χ(SFHT(−M, −γ ))) = χ(SFH(−M, −γ )). (1.9)
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10 Z. Li and F. Ye

Equations (1.8) and (1.9) imply Equation (1.7), which finishes the proof of Theorem 1.1.

The detailed proof can be found in Section 5.

The proof of Theorem 1.3 is almost straightforward, based on the work of

Lekili [39], and Baldwin and Sivek [11]. Since SHGT(−M, −γ ) is direct summands of

SHG(−MT , −γ ∪ mT) in some gradings, it suffices to prove the theorem when H1(M;Z) is

torsion-free. In this case, the decomposition is just induced by admissible surfaces and

Theorem 1.3 follows from the isomorphism

SHM(M, γ ) ∼= SFH(M, γ ) ⊗ �.

The detailed proof can be also found in Section 5.

In Section 6, we study knots whose dimC KHI are small and prove Theorem 1.5,

Theorem 1.8, and analog theorems in Heegaard Floer theory.

1.2 Conventions

If it is not mentioned, all manifolds are smooth, oriented, and connected. Homology

groups and cohomology groups are with Z coefficients, that is, H∗(M) := H∗(M;Z) for

any manifold M. For other coefficients (like Q), we still write H∗(M;Q). We write Zn

for Z/nZ. For a simple closed curve on a surface, we do not distinguish between its

homology class and itself. The algebraic intersection number of two curves α and β on

a surface is denoted by α · β, while the number of intersection points between α and

β is denoted by |α ∩ β|. A basis (m, l) of H1(T2;Z) satisfies m · l = −1. The surgery

means the Dehn surgery and the slope q/p in the basis (m, l) corresponds to the curve

qm + pl.

2 Twisted Sutured Homology

In this section, we collect useful properties of SHG.

2.1 Notations, gradings, and Euler characteristics

Definition 2.1 ([29, 36]). A balanced sutured manifold (M, γ ) consists of a compact

oriented 3-manifold M with non-empty boundary together with a closed 1-submanifold

γ on ∂M. Let A(γ ) = [−1, 1] × γ be an annular neighborhood of γ ⊂ ∂M, and let R(γ ) =
∂M\int(A(γ )). They satisfy the following properties.

(1) Neither M nor R(γ ) has a closed component.
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An Enhanced Euler Characteristic 11

(2) If ∂A(γ ) = ∂R(γ ) is oriented in the same way as γ , then we require this

orientation of ∂R(γ ) induces one on R(γ ). The induced orientation on R(γ ) is

called the canonical orientation.

(3) Let R+(γ ) be the part of R(γ ) so that the canonical orientation coincides

with the induced orientation on ∂M, and let R−(γ ) = R(γ )\R+(γ ). We require

that χ(R+(γ )) = χ(R−(γ )). If γ is clear in the contents, we simply write

R± = R±(γ ).

The constructions of sutured instanton homology SHI and sutured monopole

homology SHM for balanced sutured manifolds were originated by Kronheimer and

Mrowka [36]. Later, Baldwin and Sivek [7] dealt with the naturality problem of these

homologies and constructed SHI and SHM. After that, several groups of people studies

these homologies extensively, see for example [8, 12, 20, 41, 61].

In this paper, we will use SHG to denote both SHI and SHM and call it twisted

sutured homology. The coefficient field is denoted by F. For closed 3-manifolds and

knots with basepoints, we can construct balanced sutured manifolds and then apply

twisted sutured homology to them as follows.

Definition 2.2. Suppose that Y is a closed 3-manifold and z ∈ Y is a basepoint. Let Y(1)

be obtained from Y by removing a 3-ball containing z, and let δ be a simple closed curve

on ∂Y(1) ∼= S2. Suppose that K ⊂ Y is a knot and w is a basepoint on K. Let Y(K) be the

knot complement of K, and let γ = m ∪ (−m) consist of two meridians with opposite

orientations of K near w. Then (Y(1), δ) and (Y(K), γ ) are balanced sutured manifolds.

Define

HG(Y, z) := SHG(Y(1), δ) and KHG(Y, K, w) := SHG(Y(K), γ ).

Convention. Different choices of the basepoints give isomorphic vector spaces. Since

in the current paper we only care about the isomorphism class of the vector spaces, we

omit the basepoints and simply write HG(Y) and KHG(Y, K) instead.

If S is a properly embedded surface in M with some admissible conditions. The first

author [41] constructed a grading on SHG(M, γ ) (with some pioneering work done by

Kronheimer and Mrowka [35] and Baldwin and Sivek [12]).

Definition 2.3 ([20]). Suppose (M, γ ) is a balanced sutured manifold and S ⊂ M is

a properly embedded surface. The surface S is called an admissible surface if the

followings hold.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad066/7109230 by Peking U

niversity user on 30 N
ovem

ber 2023



12 Z. Li and F. Ye

(1) Every boundary component of S intersects γ transversely and nontrivially.

(2) 1
2 |S ∩ γ | − χ(S) is an even integer.

Theorem 2.4 ([40, 41]). Suppose (M, γ ) is a balanced sutured manifold and S ⊂ (M, γ ) is

an admissible surface. Then there is a Z-grading on SHG(M, γ ) induced by S, which we

write as

SHG(M, γ ) =
⊕
i∈Z

SHG(M, γ , S, i).

This decomposition satisfies the following properties.

(1) Suppose n = 1
2 |∂S ∩ γ |. If |i| > 1

2 (n − χ(S)), then SHG(M, γ , S, i) = 0.

(2) If there is a sutured manifold decomposition (M, γ )
S� (M ′, γ ′) in the sense

of Gabai [19], then we have

SHG(M, γ , S,
1

2
(n − χ(S))) ∼= SHG(M ′, γ ′).

(3) For any i ∈ Z, we have

SHG(M, γ , S, i) = SHG(M, γ , −S, −i).

(4) For any i ∈ Z, we have

SHG(M, −γ , S, i) ∼= SHG(M, γ , S, −i).

(5) For any i ∈ Z, we have

SHG(−M, γ , S, i) ∼= HomF(SHG(M, γ , S, −i),F).

If S ⊂ (M, γ ) is not admissible, then we can perform an isotopy on S to make it

admissible.

Definition 2.5. Suppose (M, γ ) is a balanced sutured manifold, and S is a properly

embedded surface. A stabilization of S is a surface S′ obtained from S by isotopy in the

following sense. This isotopy creates a new pair of intersection points:

∂S′ ∩ γ = (∂S ∩ γ ) ∪ {p+, p−}.

We require that there are arcs α ⊂ ∂S′ and β ⊂ γ , oriented in the same way as ∂S′ and γ ,

respectively, and the following hold.

(1) ∂α = ∂β = {p+, p−}.
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An Enhanced Euler Characteristic 13

Fig. 1. The positive and negative stabilizations of S.

(2) α and β cobound a disk D with int(D) ∩ (γ ∪ ∂S′) = ∅.

The stabilization is called negative if ∂D is the union of α and β as an oriented

curve. It is called positive if ∂D = (−α) ∪ β. See Figure 1. We denote by S±k the surface

obtained from S by performing k positive or negative stabilizations, respectively.

Remark 2.6. The definition of stabilizations of a surface depends on the orientations

of the suture and the surface. If we reverse the orientation of the suture or the surface,

then positive and negative stabilizations switch between each other.

One can also relate the gradings associated to different stabilizations of a fixed

surface.

Theorem 2.7 ([41, Proposition 4.3] and [61, Proposition 4.17]). Suppose (M, γ ) is a bal-

anced sutured manifold and S is a properly embedded surface in M, which intersects the

suture γ transversely. Suppose S has a distinguished boundary component so that all the

stabilizations mentioned below are performed on this boundary component. Then, for

any p, k, l ∈ Z so that the stabilized surfaces Sp and Sp+2k are both admissible, we have

SHG(M, γ , Sp, l) = SHG(M, γ , Sp+2k, l + k).

Note Sp is a stabilization of S as introduced in Definition 2.5, and, in particular, S0 = S.

If we have multiple admissible surfaces, then they together induce a multi-

grading.
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14 Z. Li and F. Ye

Theorem 2.8 ([20, Proposition 1.14]). Suppose (M, γ ) is a balanced sutured manifold

and S1, . . . , Sn are admissible surfaces in (M, γ ). Then there exists a Zn-grading on

SHG(M, γ ) induced by S1, . . . , Sn, which we write as

SHG(M, γ ) =
⊕

(i1,...,in)∈Zn

SHG(M, γ , (S1, . . . , Sn), (i1, . . . , in)).

Theorem 2.9 ([20, Theorem 1.12]). Suppose (M, γ ) is a balanced sutured manifold and

α ∈ H2(M, ∂M) is a nontrivial homology class. Suppose S1 and S2 are two admissible

surfaces in (M, γ ) such that

[S1] = [S2] = α ∈ H2(M, ∂M).

Then, there exists a constant C so that

SHG(M, γ , S1, l) = SHG(M, γ , S2, l + C).

Based on the Zn grading from Theorem 2.8, we can define the graded Euler

characteristic.

Definition 2.10. Suppose (M, γ ) is a balanced sutured manifold and S1, . . . , Sn are

admissible surfaces in (M, γ ) such that [S1], . . . , [Sn] generate H2(M, ∂M). Let ρ1, . . . , ρn ∈
H ′ = H1(M)/Tors satisfying ρi · Sj = δi,j. The graded Euler characteristic of SHG(M, γ ) is

χgr(SHG(M, γ )) :=
∑

(i1,...,in)∈Zn

χ(SHG(M, γ , (S1, . . . , Sn), (i1, . . . , in))) · (ρ
i1
1 · · · ρin

n ) ∈ Z[H ′]/ ± H ′.

Remark 2.11. By Theorem 2.9, the definition of graded Euler characteristic is inde-

pendent of the choices of S1, . . . , Sn if we regard it as an element in Z[H ′]/ ± H ′. If

the admissible surfaces S1, . . . , Sn and a particular closure of (M, γ ) is fixed, then the

ambiguity of ±H ′ can be removed.

2.2 Contact handles and bypasses

Suppose (M, γ ) ⊂ (M ′, γ ′) is a proper inclusion of balanced sutured manifolds and

suppose ξ is a contact structure on M ′\intM with dividing sets γ ′ ∪ (−γ ). For monopole

theory and instanton theory, Baldwin and Sivek [8, 9] (see also [40]) constructed a contact
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An Enhanced Euler Characteristic 15

Fig. 2. Left, the sutured manifold (M, γ ) with two points p and q on the suture. Right, the 1-handle

attachment along p and q.

gluing map

�ξ : SHG(−M, −γ ) → SHG(−M ′, −γ ′)

based on contact handle decompositions and the first author [40] showed that the map

is functorial, that is, it is independent of the contact handle decompositions and gluing

two contact structures induces composite maps. In this subsection, we will describe the

maps associated to contact 1- and 2-handle attachments, and bypass attachments (cf.

[26]).

Contact 1-handle. Suppose D− and D+ are disjoint embedded disks in ∂M, which

each intersect γ in a single properly embedded arc. Consider the standard contact

structure ξstd on the 3-ball B3. We glue (D2 × [−1, 1], ξD2) ∼= (B3, ξstd) to (M, γ ) by

diffeomorphisms

D2 × {−1} → D− and D2 × {+1} → D+,

which preserve and reverse orientations, respectively, and identify the dividing sets

with the sutures. Then we round corners as shown in Figure 2 (cf. [9, Figure 2]). Let

(M1, γ1) be the resulting sutured manifold.

Suppose (Y, R) is a closure of (M1, γ1). By [9, Section 3.2], it is also a closure of

(M, γ ). Define the map associated to the contact 1-handle attachment by the identity

map

Ch1 = Ch1,D−,D+ := id : SHG(−M, −γ )
=−→ SHG(−M1, −γ1).

Contact 2-handle. Suppose μ is an embedded curve in ∂M, which intersects γ in

two points. Let A(μ) be an annular neighborhood of λ intersecting γ in two cocores. We
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16 Z. Li and F. Ye

Fig. 3. Left, the sutured manifold (M, γ ) and the curve β ⊂ ∂M that intersects γ at two points.

Right, the 2-handle attachment along the curve μ.

glue (D2 × [−1, 1], ξD2) ∼= (B3, ξstd) to (M, γ ) by an orientation-reversing diffeomorphism

∂D2 × [−1, 1] → A(μ),

which identifies positive regions with negative regions. Then we round corners as

shown in Figure 3 (cf. [9, Figure 3]). Let (M2, γ2) be the resulting sutured manifold.

We construct the map associated to the contact 2-handle attachment as follows.

Let μ′ be the knot obtained by pushing μ into M slightly. Suppose (N, γN) is the manifold

obtained from (M, γ ) by a 0-surgery along μ′ with respect to the framing from ∂N. By

[9, Section 3.3], the sutured manifold (N, γN) can be obtained from (M2, γ2) by attaching

a contact 1-handle. Since μ′ ⊂ int(M), the construction of the closure of (M, γ ) does not

affect μ′. Thus, we can construct a cobordism between closures of (M, γ ) and (N, γN)

by attaching a 4-dimensional 2-handle associated to the surgery on μ′. This cobordism

induces a cobordism map

Cμ′ : SHG(−M, −γ ) → SHG(−N, −γN).

Consider the identity map

ι : SHG(−M2, −γ2)
=−→ SHG(−N, −γN).

Define the the map associated to the contact 2-handle attachment as

Ch2 = Ch2,μ := ι−1 ◦ Cμ′ : SHG(−M, −γ ) → SHG(−M2, −γ2).

Bypass attachment. Suppose α is an embedded arc in ∂M, which intersects γ in

three points. Let D be a disk neighborhood of α intersecting γ in three arcs. There are
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An Enhanced Euler Characteristic 17

Fig. 4. The bypass arc and the bypass attachment, where the orientation of ∂M is pointing out.

six endpoints after cutting γ along α. We replace three arcs in D with another three arcs

as shown in Figure 4. Let (M, γ ′) be the resulting sutured manifold. The arc α is called a

bypass arc and this procedure is called bypass attachment along α.

By Ozbagci [47, Section 3], the bypass attachment can be recovered by contact

handle attachments as follows. First, one can attach a contact 1-handle along two

endpoints of α. Then one can attach a contact 2-handle along a circle that is the union

of α and an arc on the attached 1-handle. Topologically, the 1-handle and the 2-handle

form a canceling pair, so the diffeomorphism type of the 3-manifold does not change.

However, the contact structure is changed, and the suture γ is replaced by γ ′. We define

the bypass map associated to the bypass attachment as

ψα := Ch2 ◦ Ch1 : SHG(−M, −γ ) → SHG(−M, −γ ′).

In [8, 12], Baldwin and Sivek proved the bypass exact triangle for sutured

monopole Floer homology and sutured instanton Floer homology.

Theorem 2.12 ([8, Theorem 5.2] and [12, Theorem 1.21]). Suppose (M, γ1), (M, γ2), (M, γ3)

are balanced sutured manifolds such that the underlying 3-manifolds are the same, and

the sutures γ1, γ2, and γ3 only differ in a disk shown in Figure 5. Then there exists an

exact triangle

(2.1)

Moreover, the maps ψi are induced by cobordisms, hence is homogeneous with

respect to the relative Z2 grading on SHG(M, γi).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad066/7109230 by Peking U

niversity user on 30 N
ovem

ber 2023



18 Z. Li and F. Ye

Fig. 5. The bypass triangle.

Fig. 6. A trivial bypass.

The following proposition is straightforward from the description of the

bypass map.

Proposition 2.13. Suppose (M, γ ) is a balanced sutured manifold and S ⊂ (M, γ ) is

an admissible surface. Suppose the disk as in Figure 5, where we perform the bypass

change, is disjoint from ∂S. Let γ2 and γ3 be the resulting two sutures. Then all the maps

in the bypass exact triangle (2.1) are grading preserving, that is, for any i ∈ Z, we have

an exact triangle

where ψk,i are the restriction of ψk in (2.1).

A special bypass arc α0 is depicted in Figure 6, where the bypass attachment

along α is called a trivial bypass (cf. [27, Section 2.3]). Attaching a trivial bypass does

not change the suture on ∂M and induces a product contact structure on ∂M × I. The

functoriality of the contact gluing maps indicates the following proposition.
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An Enhanced Euler Characteristic 19

Proposition 2.14 (). A trivial bypass on (M, γ ) induces an identity map on SHG(M, γ ).

3 Decomposition Associated to Tangles

Suppose K is a rationally null-homologous knot in a closed 3-manifold Y, that is, [K] =
0 ∈ H1(Y;Q). Suppose q is the order of [K], that is, q is the smallest number satisfying

q[K] = 0 ∈ H1(Y;Z). In [43, Section 4], we construct a decomposition

I�(Y) ∼=
q⊕

i=0

I�(Y, i).

This decomposition provides a candidate for the counterpart of the torsion spinc

decompositions in monopole theory and Heegaard Floer theory.

In this section, we generalize this decomposition to rationally null-homologous

tangles in balanced sutured manifolds. There is no essential difference between the

proofs for knots and tangles. All arguments apply to both sutured instanton and

monopole homology, so we can safely use SHG.

3.1 Basic setups

In this subsection, we review the construction for tangles and collect important lemmas

in [43, Section 3.2], with mild modifications.

Suppose (M, γ ) is a balanced sutured manifold. Suppose T = T1 ∪ · · · ∪ Tm is

a vertical tangle in (M, γ ) (cf. [63, Definition 1.1]), that is, a properly embedded 1-

submanifold with

|Ti ∩ R+(γ )| = |Ti ∩ R−(γ )| = 1.

Let Ti be oriented from R+(γ ) to R−(γ ). Throughout this subsection, we consider one

component α of T and assume it is rationally null-homologous, that is, [α] = 0 ∈
H1(M, ∂M;Q). Without loss of generality, suppose α = T1.

We can construct a new balanced sutured manifold (MT , γT) as follows. Let MT

be obtained from M by removing a neighborhood N(T) = ⋃m
i=1 N(Ti) of T. Suppose γi is

a positively oriented meridian of Ti on ∂N(Ti). Define

γT = γ ∪ γ1 ∪ · · · ∪ γm.

Since α is rationally null-homologous, there exists a surface S in M with ∂S

consisting of arcs β1, . . . , βk and q copies of α for some integers k and q. Here q is the

order of α.
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20 Z. Li and F. Ye

Fig. 7. The arcs ζ+, ζ−, the sutures �−, �0, �n, �+, and the bypass arcs η+, η−.

The surface S can be modified into a properly embedded surface ST in MT as

follows. First, for q arcs in ∂S parallel to α, we isotope them to be on ∂N(α). Then

β1, . . . , βk can be regarded as arcs on ∂MT . Second, We can isotope S to make it intersect

T2, . . . , Tm transversely. Then removing disks in N(Ti) ∩ S for all i = 2, . . . , m induces a

properly embedded surface ST in MT . Note that ∂ST intersects γ1 at q points, one for

each arc parallel to α, and the part of ∂ST on ∂N(Ti) consists of circles parallel to γi for

i = 2, . . . , m.

Suppose p+ and p− are the endpoints of α on R+(γ ) and R−(γ ), respectively.

Choose an arc ζ+ ⊂ R+(γ ) connecting p+ and γ . The arc ζ+ induces an arc on R+(γT)

connecting γ1 to γ such that the part on ∂N(α) is parallel to α. We still denote this arc

by ζ+ for simplicity. Similarly, we can choose an arc ζ− ⊂ R−(γT) connecting γ1 to γ .

Let �0 be obtained from γT by band sum operations along ζ+ and ζ−. Then let �n

be obtained from �0 by twisting along (−γ1) for n times. Moreover, let �+ be the suture

as depicted in Figure 7 and let �− = γT .

Remark 3.1. The construction of ζ+ and ζ− here is a little different from the one in [43,

Section 3.2], where we used β1 to construct ζ± and removed a trivial tangle from MT to

obtain a manifold MT0
. Hence, the construction of �n, �± is also different. In particular,

they were on MT0
in the construction of [43, Section 3.2]. However, it turns out that

removing the trivial tangle is not necessary and we can decompose MT0
along a product

disk to recover MT in [43, Section 3.2, Step 3]. Thus, we can consider sutures on MT and

all results in [43, Section 3.2] apply without essential change. Also, the conditions that

ζ± are disjoint from β1, . . . , βk are not essential.

There are two straightforward choices of bypass arcs on �n in Figure 7, denoted

by η+ and η−, respectively. It is straightforward to check that these two bypass

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad066/7109230 by Peking U

niversity user on 30 N
ovem

ber 2023



An Enhanced Euler Characteristic 21

Fig. 8. Left two subfigures, the bypass attachment along η+. Right two subfigures, the bypass

arcs before and after the contact 2-handle attachment.

arcs induce the following bypass exact triangles from Theorem 2.12 (cf. the left two

subfigures of Figure 8).

(3.1)

The bypasses are attached along η+ and η− from the exterior of the 3-manifold MT0
,

though the point of view in Figure 7 is from the interior of the manifold. So readers have

to take extra care when performing these bypass attachments.

Since the bypass arcs η+ and η− are disjoint from ∂ST , the bypass maps in the

exact triangles (3.1) preserve gradings associated to ST by Proposition 2.13. We describe

it precisely as follows.

Definition 3.2. Suppose (M, γ ) is a balanced sutured manifold and S is an admissible

surface in (M, γ ). For any i, j ∈ Z, define

SHG(M, γ , S, i)[j] = SHG(M, γ , S, i − j).

Lemma 3.3 ([43, Lemma 3.15 and Lemma 3.18]). For any j ∈ N ∪ {+, −}, there exists

admissible surfaces Sj with respect to (MT , �j) obtained from ST by stabilizations and
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22 Z. Li and F. Ye

integers ijmax and ijmin such that

lim
n→+∞ inmax = +∞, lim

n→+∞ inmin = −∞,

and

SHG(−MT , −�j, Sj, i) = 0 for i �∈ [ijmin, ijmax].

Moreover, for any n ∈ N, there are two exact triangles

and

Furthermore, all maps in the above two exact triangles are grading preserving.

Remark 3.4. For j ∈ N ∪ {+, −}, the surfaces Sj and integers ijmax, ijmin were defined

explicitly in [43, Step 2 in Section 3.2] by some stabilizations. However, three conditions

about ST at the start of [43, Step 2 in Section 3.2] are not necessary. We can choose Sj

to be either ST or S−1
T (the negative stabilization of ST with respect to �j, cf. Definition

2.5), which is admissible with respect to �j. The choice is denoted by Sj = Sτ(j)
T for

τ(j) ∈ {0, −1}. Explicitly, τ(j) = 0 if Sj is admissible and τ(j) = −1 if Sj is not. For the

definitions of ijmax, ijmin, consider the closure (Yj, Rj) of (MT , �j) such that Sj extends to

a closed surface S̄j ⊂ Yj. Define

ijmax = −1

2
χ(S̄j), and ijmin = 1

2
χ(S̄j) − τ(j).
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An Enhanced Euler Characteristic 23

Moreover, we have

χ(S̄j) = χ(Sj) − 1

2
|Sj ∩ �j|

Hence

χ(S̄−) = χ(S̄+) − q + τ(−) and χ(S̄n) = χ(S̄+) − nq + τ(n) for n ∈ N,

where q is the order of the tangle α. Since the surfaces after stabilizations are disjoint

from the bypass arcs, the bypass maps are grading preserving by Proposition 2.13. The

vanishing results follow from term (2) of Theorem 2.4, and a priori we do not know if

SHG(−MT , −�j, Sj, i) is non-vanishing for i ∈ {ijmin, ijmin}.

From the vanishing results and the exact triangles in Lemma 3.3, the following

lemma is straightforward. For any i ∈ Z, n ∈ N, let ψ
n,i
±,n+1 be the restriction of ψn±,n+1 on

the i-th grading associated to Sn.

Lemma 3.5 ([43, Lemma 3.20]). The map

ψ
n,i
+,n+1 : SHG(−MT , −�n, Sn, i) → SHG(−MT , −�n+1, Sn+1, i − (inmin − in+1

min))

is an isomorphism if i < Pn := inmin + (n + 1)q − τ(+). Similarly, the map

ψ
n,i
−,n+1 : SHG(−MT , −�n, Sn, i) → SHG(−MT , −�n+1, Sn+1, i + (in+1

max − inmax))

is an isomorphism if i > ρn := inmax − nq.

Proof. Note that

in+1
max + (inmin − in+1

min) − (i+max − i+min) = inmin + (in+1
max − in+1

min) − (i+max − i+min)

= inmin + (−χ(S̄+) + (n + 1)q) − (−χ(S̄+) + τ(+))

= inmin + (n + 1)q − τ(+).

in+1
min − (in+1

max − inmax) + (i−max − i−min) = inmax − (in+1
max − in+1

min) + (i−max − i−min)

= inmax − (−χ(S̄+) + (n + 1)q) + (−χ(S̄+) − q)

= inmax − nq.
�

There is another important exact triangle induced by the surgery exact triangle.
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24 Z. Li and F. Ye

Lemma 3.6 ([43, Lemma 3.21]). Suppose T ′ = T\α = T2 ∪ · · · ∪ Tm. Then for any n ∈ N,

there is an exact triangle

(3.2)

Furthermore, we have two commutative diagrams related to ψn+,n+1 and ψn−,n+1, respec-

tively

The proof of this lemma is used in Section 4. So we sketch the proof for the

reader’s convenience.

Proof. Sketch of the proof of Lemma 3.6 Recall that γ1 is the meridian of α on ∂MT .

Let γ ′
1 be the curve obtained by pushing γ1 into the interior of MT , with the framing

induced by ∂MT . The exact triangle in (3.2) comes from the surgery exact triangle along

γ1: 1-surgery twists the suture and leads to �n+1; 0-surgery corresponds to a 2-handle

attachment along γ1 and hence fills the tangle that leads to the sutured manifold

(MT ′ , γT ′). The commutativity coming from the fact that the surgery curve γ ′
1 and the

bypass arc η′+ are disjoint from each other, and the fact that the corresponding bypass

after the 0-surgery along γ ′
1 is trivial. �

Remark 3.7. Indeed, we have two more commutative diagrams about Fn:

The proofs are also similar.
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An Enhanced Euler Characteristic 25

Combining Lemma 3.3, Lemma 3.5, and Lemma 3.6, we get the following result.

Lemma 3.8 ([43, Lemma 3.22]). For a large enough integer n, the map Gn in Lemma 3.6

is zero. Hence, Fn+1 is surjective by the exact triangle (3.2).

The map Fn+1 in Lemma 3.6 is a map associated to a contact 2-handle attach-

ment. We have the following grading preserving result.

Lemma 3.9 ([42, Section 4.2]). Suppose (M, γ ) is a balanced sutured manifold and

S ⊂ (M, γ ) is an admissible surface. Suppose α ⊂ M is a properly embedded arc that

intersects S transversely and ∂α ∩ ∂S = ∅. Let N = M\intN(α), SN = S ∩ N, and let μ ⊂ ∂N

be the meridian of α that is disjoint from ∂SN . Suppose γN is a suture on ∂N such that

(N, γN) is a balanced sutured manifold and attaching a contact 2-handle along μ gives

(M, γ ). Let Ch2,μ be the map associated to the contact 2-handle attachment. Then for any

i ∈ Z, we have

Ch2,μ(SHG(−N, −γN , SN , i)) ⊂ SHG(−M, −γ , S, i).

3.2 One tangle component

In this subsection, we apply lemmas in Section 3.1 to obtain a decomposition of twisted

sutured homology associated to one tangle component. The results in this subsection

are a generalization of [43, Section 4.3], where we dealt with rationally null-homologous

knots. The proofs are almost identical, so we omit details and only point out the

difference.

We adapt the notations in Subsection 3.1. Suppose (M, γ ) is a balanced sutured

manifold and suppose T ⊂ (M, γ ) is a vertical tangle with only one component α = T1,

which is rationally null-homologous of order q. Let MT be the manifold obtained from M

by removing a neighborhood of T and let γT = γ ∪ mα, where mα is a positively oriented

meridian of α.

We start with the following lemma, which roughly says the summands in the

“middle” gradings of SHG(−MT , −�n) associated to Sn are cyclic of order q.

Lemma 3.10. Suppose n ∈ N and i1, i2 ∈ Z satisfying i1, i2 ∈ (ρn, Pn) and i1 − i2 = q,

where ρn and Pn are constants in Lemma 3.5:

ρn = inmax − nq and Pn = inmin + (n + 1)q − τ(+).
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26 Z. Li and F. Ye

Then we have

SHG(−MT , −�n, Sn, i1) ∼= SHG(−MT , −�n, Sn, i2).

Proof. Based on Lemma 3.5, the proof is similar to that of [43, Lemma 4.20]. Here we

only include some key steps as follows.

Since i1 < Pn, by Lemma 3.5, we know

SHG(−MT , −�n, Sn, i1) ∼= SHG(−MT , −�n+1, Sn, i1 − (inmin − in+1
min)).

Similarly, since i2 > ρn, we know that

SHG(−MT , −�n, Sn, i2) ∼= SHG(−MT , −�n+1, Sn, i2 + (in+1
max − inmax)).

By definitions of inmin and inmax in Remark 3.4, we have

i1 − inmin + in+1
min = i2 − inmax + in+1

max + q + (inmax − inmin) − (in+1
max − in+1

min)

= i2 − inmax + in+1
max + q + (−χ(S̄n) − τ(n)) − (−χ(S̄n+1) − τ(n + 1))

= i2 − inmax + in+1
max + q + (−χ(S̄+) + nq) − (−χ(S̄+) + (n + 1)q)

= i2 − inmax + in+1
max.

Hence, we obtain the desired result. �

Note that

Pn − ρn = (inmin + (n + 1)q − τ(+)) − (inmax − nq)

= − (inmax − inmin) − τ(+) + (2n + 1)q

= − (−χ(S̄+) + nq) − τ(+) + (2n + 1)q

= χ(S̄+) − τ(+) + (n + 1)q.

Thus, the difference of Pn and ρn can be infinitely large.

Definition 3.11. Define Qn = Pn −q+ τ(+). Suppose n ∈ N satisfies Qn −ρn > q, define

SHGα(−M, −γ , i) := SHG(−MT , −�n, Sn, Qn − i),
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An Enhanced Euler Characteristic 27

and

SHGα(−M, −γ ) :=
q⊕

i=1

SHGα(−M, −γ , i).

Remark 3.12. From the definitions of Qn, Pn, ρn, and the fact

inmax − inmin = −χ(S̄n) + τ(n) = −χ(S̄+) + nq

in Remark 3.4, we have

inmax − Qn = inmax − (Pn − q + τ(+)) = inmax − inmin − nq = −χ(S̄+) = ρn − inmin. (3.3)

Those equations are used in the proof of Lemma 3.15. This motivates the definition

of Qn, which is only for the convenience of the computation. The following remark

implies we can freely choose Qn so that Qn − i ∈ (ρn, Pn) for i = 1, . . . , q to carry out

the construction.

Remark 3.13. From Lemma 3.5 and the fact

Pn+1 − Pn = in+1
min − inmin + q = in+1

max − inmax,

the isomorphism class of SHGα(−M, −γ , i) is independent of the choice of the large

integer n. Also, by Lemma 3.10, the isomorphism class of SHGα(−M, −γ ) would be the

same (up to a Zq grading shift) if we consider arbitrary q many consecutive gradings

within the range (ρn, Pn).

Remark 3.14. For a rationally null-homologous knot K̂ ⊂ Ŷ with a basepoint p, we can

remove a neighborhood of p add a suture δ on ∂N(p) such that two intersection points of

K̂ and ∂N(p) lie on R+(γ ) and R−(γ ), respectively. Then K̂ becomes a vertical tangle α in

(Ŷ − intN(p), δ) which is rationally null-homologous. In this case, SHGα(Ŷ − intN(p), δ, i)

reduces to I+(−Ŷ, K̂, i) in [43, Definition 4.21], up to a Zq grading shift.

Lemma 3.15. Let SHGα(−M, −γ ) be defined as in Definition 3.11. We have

dim
F
SHGα(−M, −γ ) = dim

F
SHG(−M, −γ ).
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28 Z. Li and F. Ye

Proof. Based on Lemma 3.3, the proof is similar to that of [43, Lemma 4.25]. Now we

split the bypass exact triangle of (−�+, −�n, −�n+1) into five blocks of sizes

q, −χ(S̄+) + 1, χ(S̄+) + (n − 1)q − 1, q, −χ(S̄+) + 1,

respectively, and split the bypass exact triangle of (−�−, −�n, −�n+1) into five blocks of

sizes

−χ(S̄+) + 1, q, χ(S̄+) + (n − 1)q − 1, −χ(S̄+) + 1, q,

respectively. Remark 3.12 ensures that the proof of [43, Lemma 4.25] applies verbatim.

Here we only include some key steps as follows.

Suppose n ∈ N satisfies Qn −ρn > q. We can apply Proposition 3.3. Using blocks,

we have the following. (There is no enough room for writing down the whole notation

for formal sutured homology, so we will only write down the sutures to denote them.)

The empty block implies the summands in the block are zeros. Note that

i+max − i+min + 1 = −χ(S̄+) + τ(+) + 1 ≤ q + (−χ(S̄+) + 1).

From the exactness, we know that

X1 = G, X3 = E, X4 = F, and X5 = D.
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An Enhanced Euler Characteristic 29

There is another bypass exact triangle, and similarly we have

Note that

i−max − i−min + 1 = −χ(S̄+) − q + 1 ≤ q + (−χ(S̄+) + 1).

Comparing the two expressions of SHG(−MT , −�n+1, Sn), we have

⎛⎜⎜⎜⎜⎜⎜⎜⎝

G

X2

E

F

D

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= SHG(−MT , −�n+1, Sn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A

B

C

X6

J

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Taking sizes into consideration, we know that

(
G

X2

)
=

(
A

B

)
, E = C, and

(
F

D

)
=

(
X6

J

)
.

Thus, we know that

SHG(−MT , −�n+1, Sn) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

A

B

E

F

D

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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30 Z. Li and F. Ye

By construction, we have

dimF SHGα(−M, −γ ) = dimF B

= dim
F

SHG(−MT , −�n+1) − dim
F

SHG(−MT , −�n)

= dimF SHG(−M, −γ ).

Note that the last equality follows from Lemma 3.8. Hence, we obtain the

desired result. �

Remark 3.16. The essential difference for the case of tangles is that �+ is not equal to

�−, though it is true in the case of knots in Remark 3.14.

Proposition 3.17. Suppose n ∈ N is large enough. Then the map Fn in Lemma 3.6

restricted to SHGα(−M, −γ ) is an isomorphism, that is,

Fn|SHGα(−M,−γ ) : SHGα(−M, −γ )
∼=−→ SHG(−M, −γ ).

Proof. Based on Lemma 3.8, the proof is similar to that of [43, Proposition 4.26]. It

suffices to show that the restriction of Fn is surjective. Here we only include some key

steps as follows.

By Lemma 3.8, we know that Fn is surjective. Then it suffices to show that Fn

remains surjective when restricted to SHGα(−M, −γ ). For any x ∈ SHG(−M, −γ ), let

y ∈ SHG(−MT , −�n) be an element so that Fn(y) = x. Suppose

y =
∑
j∈Z

yj, where yj ∈ SHG(−MT , −�n, Sn, j).

For any yj, we want to find y′
j ∈ SHGα(−M, −γ ) so that Fn(yj) = Fn(y′

j).

To do this, we first assume that j ≥ Qn. Then there exists an integer m so that

Qn − q ≤ j − mq ≤ Qn − 1.

We can take

y′
j = (ψ

n,j−mq
−,n+1 )−1 ◦ · · · ◦ (ψ

n,in+m
max −inmax+j−mq

−,n+m )−1 ◦ ψn+m−1+,n+m ◦ · · · ◦ ψn+,n+1(yj). (3.4)

From Lemma 3.5, all the negative bypass maps involved in (3.4) are isomorphisms so the

inverses exist. Also, we have

y′
j ∈ SHG(−MT , −�n, Sn, j − mq) ⊂ SHGα(−M, −γ ).
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An Enhanced Euler Characteristic 31

Finally, from commutative diagrams in Lemma 3.6, we know that Fn(y′
j) = Fn(yj).

For

j ∈ [Qn − q, Qn − 1],

we can simply take y′
j = yj.

For j < Qn − q, we can pick y′
j similarly, while switching the roles of ψ∗+,∗ and

ψ∗−,∗ in (3.4).

In summary, we can take

y′ =
∑
j∈Z

y′
j ∈ SHGα(−M, −γ ) with Fn(y′) = Fn(y) = x.

Hence Fn is surjective, and we obtain the desired result. �

Remark 3.18. In Definition 3.11, we use a large enough integer n to define

SHGα(−M, −γ ). We can also define �−n from �0 by twisting along γ1 for n times.

For a large enough integer n, we can define a vector space SHG′
α(−M, −γ ) generalizing

I−(−Ŷ, K̂) in [43, Definition 4.27]. However, from the discussion in [43, Section 4.4

in ArXiv version 2] between I+(−Ŷ, K̂) and I−(−Ŷ, K̂), we expect that SHG′
α(−M, −γ )

is isomorphic to SHGα(−M, −γ ) up to a Zq grading shift. Hence, there is no new

information and we skip the discussion here.

3.3 More tangle components

In this subsection, we obtain a decomposition of twisted sutured homology associated

to more tangle components. Suppose (M, γ ) is a balanced sutured manifold. For a

vertical tangle T in M, let MT = M\intN(T) and let γT be the union of γ and positively

oriented meridians of components of T.

First, we prove some lemmas about homology groups.

Lemma 3.19. For any connected tangle α in M, we have

rkZH1(Mα) =
⎧⎨⎩rk

Z
H1(M) if [α] �= 0 ∈ H1(M, ∂M;Q),

rkZH1(M) + 1 if [α] = 0 ∈ H1(M, ∂M;Q).

Proof. Consider the long exact sequence associated to the pair (M, Mα):

H1(M, Mα)
p∗

1−→ H1(M)
i∗1−→ H1(Mα)

δ∗
1−→ H2(M, Mα)

p∗
2−→ H2(M)

i∗2−→ H2(Mα)
δ∗
2−→ H3(M, Mα).

(3.5)
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32 Z. Li and F. Ye

By the excision theorem, we have

H∗(M, Mα) ∼= Hj(N(α), ∂N(α) ∩ Mα) ∼= Hj(D2, ∂D2) ∼=
⎧⎨⎩Z j = 2,

0 j = 1, 3.

Since H2(N(α), ∂N(α)∩Mα) is generated by the disk that is the Poincaré dual of [α ∩N(α)]

and p∗
2 is induced by the projection, the image of p∗

2 is generated by the Poincaré dual

of [α]. Since H1(M) and H1(M) always have the same rank, we obtain the rank equation

from (3.5). �

Lemma 3.20. Suppose (M, γ ) is a balanced sutured manifold. There exists a (possibly

empty) tangle T = T1 ∪ · · · ∪ Tm in M, such that Tor(H1(MT)) = 0 and for any T ′ ⊂ T and

Ti ⊂ T\T ′, we have

[Ti] = 0 ∈ H1(MT ′ , ∂MT ′ ;Q). (3.6)

Proof. Suppose α is a connected tangle in M. From (3.5) and the proof of Lemma 3.19,

we have

Z〈φα〉 p∗
2−→ H2(M)

i∗2−→ H2(Mα) → 0,

where φα is the Poincaré dual of [α]. By the universal coefficient theorem, the torsion

subgroups of H2(M) and H1(M) are isomorphic. In particular, Tor(H2(M)) = 0 if and

only if Tor(H1(M)) = 0. Let α be a rationally null-homologous tangle, then

Tor(H2(Mα)) ∼= Tor(H2(M))/PD(α).

Thus, we can always choose connected tangles

T1 ⊂ M, T2 ⊂ MT1
, T3 ⊂ MT1∪T2

, . . . , Tm ⊂ MT1∪···∪Tm−1

that are rationally null-homologous to kill the whole torsion subgroup. In other word,

for T = T1 ∪ · · · ∪ Tm, we have Tor(H1(MT)) = 0.

By Lemma 3.19, we have

rkZH1(MT) = rkZH1(M) + m. (3.7)

Hence for any T ′ and any Ti satisfy the assumption, (3.6) holds, otherwise it contradicts

with the rank equality (3.7). �

Remark 3.21. Since moving the endpoints of a tangle on the boundary of the ambient

3-manifold does not change the homology class of the tangle, we can suppose the tangle
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An Enhanced Euler Characteristic 33

T in Lemma 3.20 is a vertical tangle. Moreover, when M has connected boundary, we can

suppose endpoints of T all lie in a neighborhood of a point on the suture γ .

Lemma 3.22. Suppose (M, γ ) is a balanced sutured manifold and suppose α is a

connected rationally null-homologous tangle of order q. Let Sα be a Seifert surface of

Ti, that is, ∂Si consists of q parallel copies of α and arcs on ∂M. Suppose S1, . . . , Sn are

admissible surfaces in (M, γ ) generating H2(M, ∂M). Then the restrictions of S1, . . . , Sn

and Sα on MT generate H2(MT , ∂MT).

Proof. From (3.5) and the proof of Lemma 3.19, we have

0 → H1(M)
i∗1−→ H1(Mα)

δ∗
1−→ Z〈φα〉 p∗

2−→ H2(M),

where φα is the Poincaré dual of [α]. It is straightforward to calculate

δ∗
1(PD([Sα])) = qφα. (3.8)

Since H1(M) ∼= H2(M, ∂M), we have

H2(Mα, ∂Mα)/H2(M, ∂M) ∼=H1(Mα)/H1(M) ∼= H1(Mα)/im(i∗1)

∼= H1(Mα)/ker(δ∗
1) ∼=im(δ∗

1) ∼= ker(p∗
2).

(3.9)

Since the image of p∗
2 is the Poincaré dual of [α], we have

ker(p∗
2) ∼= 〈qφα〉. (3.10)

Combining (3.8), (3.9), and (3.10), we know that [Sα] generates H2(Mα, ∂Mα)/H2(M, ∂M).

Thus, we conclude the desired property. �

In the rest of this subsection, we suppose (M, γ ) is a balanced sutured manifold

and T = T1 ∪ · · · ∪ Tm is a vertical tangle satisfying Lemma 3.20. Suppose the order of

the first component T1 in H1(M) is q1 and suppose S1 is a Seifert surface of T1.

Convention. We will still use S1 to denote its restriction on MT1
. This also applies to

other Seifert surfaces mentioned below.

We adapt the construction in Subsection 3.1. Applying results in Subsection 3.2,

we have

SHGT1
(−M, −γ ) :=

q1⊕
i=1

SHG(−MT1
, −�n, (S1)n, Qn − i) ∼= SHG(−M, −γ ),
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34 Z. Li and F. Ye

where n is a large integer, (S1)n is a (possibly empty) stabilization of S1, and Qn is a fixed

integer. For simplicity, we choose a large integer n1 such that (S1)n1
= S1 and write

�1
n1

= �n|n=n1
and Q1

n1
= Qn|n=n1

.

For the second component T2, suppose S2 is its Seifert surface in MT1
with ∂S2

containing q2 copies of T2. Now we can apply the construction in Subsection 3.1 and

the results in Subsection 3.2 to (M, �1
n1

). For a large integer n2 such that (S2)n1
= S2, we

define

SHGT1∪T2
(−M, −γ ) :=

q1⊕
i1=1

q2⊕
i2=1

SHG(−MT1∪T2
, −�2

n2
, (S1, S2), (Q1

n1
− i1, Q2

n2
− i2))

∼= SHG(−M, −γ ).

Iterating this procedure, we have the following definition.

Definition 3.23. For i = 1, . . . , m, suppose the component Tk is rationally null-

homologous of order qk in MT1∪···∪Tk−1
. Inductively, for k = 1, . . . , m, we choose a large

integer nk, a suture �k
nk

⊂ ∂MT1∪···∪Tk
, a Seifert surface Sk = (Sk)nk

⊂ MT1∪···∪Tk
, and an

integers Qk
nk

, such that nk, �k
nk

, Sk, Qk
nk

depend on the choices for the first (k−1) tangles.

Define

SHGT(−M, −γ ) :=
⊕

i1∈[1,q1],...,im∈[1,qm]

SHG(−MT , −�m
nm

, (S1, . . . , Sm), (Q1
n1

−i1, · · · , Qm
nm

−im)).

Remark 3.24. Though we only use the subscript T in the notation SHGT(−M, −γ ), it

is not known if SHGT(−M, −γ ) is independent of the choices of all constructions. In

particular, we have to choose an order of the components to define SHGT(−M, −γ ).

Applying results in Subsection 3.2 for m times, the following proposition is

straightforward.

Proposition 3.25. SHGT(−M, −γ ) ∼= SHG(−M, −γ ).

The map H1(MT1
) → H1(M) is surjective. The q1 direct summands of

SHGT1
(−M, −γ ) correspond to the order q1 torsion subgroup generated by

[T1] ∈ Tor(H1(M, ∂M)) ∼= Tor(H2(M)) ∼= Tor(H2(M)).

Hence, the summands of SHGT1
(−M, −γ ) provide a decomposition of SHG(−M, −γ ) with

respect to the torsion subgroup generated by [T1]. By induction and the fact that
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An Enhanced Euler Characteristic 35

Tor(H1(MT)) = 0, we can regard summands in SHGT(−M, −γ ) as a decomposition of

SHG(−M, −γ ) with respect to Tor(H1(M)).

To provide a decomposition of SHG(−M, −γ ) with respect to the whole H1(M)

as in Theorem 1.1, we choose admissible surfaces Sm+1, . . . , Sm+n generating H2(M, ∂M).

By Lemma 3.22, the restrictions of S1, . . . , Sm+n generate H2(MT , ∂MT). By Lemma 3.9,

the gradings associated to these surfaces behave well under restriction.

Definition 3.26. Consider the construction as above. For i = 1, . . . , m + n, let

ρ1, . . . , ρm+n ∈ H1(MT) = H1(MT)/Tors be the class satisfying ρi · Sj = δi,j. Consider

j∗ : Z[H1(MT)] → Z[H1(M)].

We write

H = H1(M), S = (S1, . . . , Sm+n), −i′k = Qk
nk

− in+k for k = 1, . . . , m,

and

−i ′ = (−i′1, . . . , −i′m, −im+1, . . . , −im+n), ρ−i ′ = ρ
−i′1
1 · · · ρ−i′m

n · ρ
−in+1
m+1 · · · ρ−im+n

m+n .

The enhanced Euler characteristic of SHG(−M, −γ ) is

χen(SHG(−M, −γ )) = j∗(χ(SHGT(−M, −γ )))

:= j∗(
∑

i1∈[1,q1],...,im∈[1,qm]
(im+1,...,im+n)∈Zn

χ(SHG(−MT , −γT , S , −i ′)) · ρ−i ′
) ∈ Z[H]/ ± H.

For h ∈ H1(M), let SHG(−M, −γ , h) be image of the summand of SHGT(−M, −γ ) under

the isomorphism in Proposition 3.25 whose corresponding element in χen(SHG(−M, −γ ))

is h.

Remark 3.27. As mentioned in Remark 3.24, the definition of SHG(−M, −γ , h) is not

canonical, that is, it may depend on many auxiliary choices. After fixing these choices,

it is still only well-defined up to a global grading shift by multiplication by an

element in h0 ∈ H1(M). However, by Theorem 5.1, the enhanced Euler characteristic

χen(SHG(−M, −γ )) only depends on (M, γ ).

4 Sutured Heegaard Floer Homology

In this section, we discuss properties of sutured (Heegaard) Floer homology SFH that

are similar to those for twisted sutured homology, so we can apply results in Section 3
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36 Z. Li and F. Ye

to SFH. Since SFH is not defined by closures of sutured manifolds, the maps associated

to surgeries and contact handle attachments are different from those for SHG.

4.1 Construction and gradings

In this subsection, we describe the definition of SFH and discuss the gradings on SFH

associated to admissible surfaces.

Definition 4.1 ([29, Section 2]). A balanced diagram H = (�, α, β) is a tuple satisfying

the following.

(1) � is a compact, oriented surface with boundary.

(2) α = {α1, . . . , αn} and β = {β1, . . . , βn} are two sets of pairwise disjoint simple

closed curves in the interior of �.

(3) The maps π0(∂�) → π0(�\α) and π0(∂�) → π0(�\β) are surjective.

For such triple, let N be the 3-manifold obtained from � × [−1, 1] by attaching

3-dimensional 2-handles along αi×{−1} and βi×{1} for i = 1, . . . , n and let ν = ∂�×{0}. A

balanced diagram (�, α, β) is called compatible with a balanced sutured manifold (M, γ )

if the balanced sutured manifold (N, ν) is diffeomorphic to (M, γ ).

Suppose H = (�, α, β) is a balanced diagram with g = g(�) and n = |α| = |β|.

Convention. In this paper, we always suppose balanced diagrams satisfy the admissi-

ble condition in [29, Section 3].

Consider two tori

Tα := α1 × · · · × αn and Tβ := β1 × · · · × βn

in the symmetric product

Symn� := (

n∏
i=1

�)/Sn.

The chain complex SFC(H) is a free F2-module generated by intersection points

x ∈ Tα ∩ Tβ . Let π2(x, y) be the set of homology classes of Whitney disks connecting

intersection points x and y. Choose a generic path of almost complex structures Js on

Symn�. For φ ∈ π2(x, y), let MJs
(φ) be the moduli space of Js-holomorphic maps

u : [0, 1] × R → Symn�,
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An Enhanced Euler Characteristic 37

which represent φ and let μ(φ) be the expected dimension of MJs
(φ). The moduli space

MJs
(φ) has a natural action of R, corresponding to reparametrization of the source. We

write

M̂Js
(φ) := MJs

(ψ)/R.

Based on the above construction, Juhász [29] defined a differential on SFC(H) by

∂Js
(x) =

∑
y∈Tα∩Tβ

∑
φ∈π2(x,y)
μ(φ)=1

#M̂Js
(φ) · y.

Theorem 4.2 ([29, 33]). Suppose (M, γ ) is a balanced sutured manifold. Then there is an

admissible balanced diagram H compatible with (M, γ ). The vector spaces H(SFC(H), ∂Js
)

for different choices of H and Js, together with some canonical maps, form a transitive

system SFH(M, γ ) over F2.

For a balanced sutured manifold (M, γ ), we can decompose SFH(M, γ ) along

spinc structures.

Fix a Riemannian metric g on M. Let v0 be a nowhere vanishing vector field

along ∂M that points into M along R−(γ ), points out of M along R+(γ ), and on γ it is

the gradient of the height function A(γ ) × I → I. The space of such vector fields is

contractible, so the choice of v0 is not important.

Suppose v and w are nowhere vanishing vector fields on M that agree with v0 on

∂M. They are called homologous if there is an open ball B ⊂ intM such that v and w are

homotopic on M\B through nowhere vanishing vector fields rel ∂M. Let Spinc(M, γ ) be

the set of homology classes of nowhere vanishing vector fields v on M with v|∂M = v0.

Note that Spinc(M, γ ) is an affine space over H2(M, ∂M).

Suppose H = (�, α, β) is a balanced diagram compatible with (M, γ ). For each

intersection point x ∈ Tα ∩ Tβ , we can assign a spinc structure s(x) ∈ Spinc(M, γ ) as

follows (cf. [29, Section 4]).

We choose a self-indexing Morse function f : M → [−1, 4] such that

f −1(
3

2
) = � × {0}.

Moreover, curves α, β are intersections of � × {0} with the ascending and descending

manifolds of the index 1 and 2 critical points of f , respectively. Then any intersection

point of αi ⊂ α and βj ⊂ β corresponds to a trajectory of gradf connecting a index 1
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38 Z. Li and F. Ye

critical point to a index 2 critical point. For x ∈ Tα ∩ Tβ , let γx be the multi-trajectory

corresponding to intersection points in x.

In a neighborhood N(γx ), we can modify gradf to obtain a nowhere vanishing

vector field v on M such that v|∂M = v0. Let s(x) ∈ Spinc(M, γ ) be the homology class of

this vector field v.

From the assignment of the spinc structure, we have the following proposition.

Proposition 4.3. For any x, y ∈ Tα ∩ Tβ , we have

s(x) − s(y) = PD([γx − γy ]),

where PD : H1(M) → H2(M, ∂M) is the Poincaré duality map.

It can be shown that there is no differential between generators corresponding

to different spinc structures. Hence, we have the following decomposition.

Proposition 4.4 ([29]). For any balanced sutured manifold (M, γ ), there is a decomposi-

tion

SFH(M, γ ) =
⊕

s∈Spinc(M,∂M)

SFH(M, γ , s).

Suppose S ⊂ (M, γ ) is an admissible surface S. To associate a Z-grading on

SFH(M, γ ) similar to Subsection 2.1, we need to suppose (M, γ ) is strongly balanced,

that is, for every component F of ∂M, we have

χ(F ∩ R+(γ )) = χ(F ∩ R−(γ )).

Remark 4.5. If ∂M is connected, then it is automatically strongly balanced. For any

balanced sutured manifold (M, γ ), we can obtain a strongly balanced manifold (M ′, γ ′)
by attaching contact 1-handles [30, Remark 3.6]. In Subsection 4.4, we will show

SFH(M ′, γ ′) ∼= SFH(M, γ )

and this isomorphism respects spinc structures. Hence, we can always deal with a

strongly balanced manifold without losing any information.

Convention. When discussing the Z-grading on SFH(M, γ ) associated to an admissible

surface S ⊂ (M, γ ), we always suppose (M, γ ) is strongly balanced.

The following construction is based on [30, Section 3].
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An Enhanced Euler Characteristic 39

Let v⊥
0 be the plane bundle perpendicular to v0 under the fixing Riemannian

metric g. Suppose v⊥
0 is oriented so that v0 is the positive normal vector field. The

strongly balanced condition on (M, γ ) ensures that v⊥
0 is trivial (cf. [30, Proposition

3.4]). Let t be a trivialization of v⊥
0 . Since any spinc structure s ∈ Spinc(M, γ ) can be

represented by a nonvanishing vector field v on M with v|∂M = v0, we can define

c1(s, t) := c1(v⊥, t) ∈ H2(M, ∂M)

to be the relative Euler class of the plane bundle v⊥ with respect to the trivialization

t, where v⊥ is perpendicular to v. In other words, the class c1(s, t) is the obstruction to

extending t from ∂M to a trivialization of v⊥ over M.

Let vS be the positive unit normal field of S. For a generic S, we can suppose vS

is nowhere parallel to v0 along ∂S. Let p(vS) be the projection of vS into v⊥
0 . Note that

p(vS)|∂S is nowhere zero. Suppose the components of ∂S are T1, . . . , Tk, oriented by the

boundary orientation.

For i = 1, . . . , k, let r(Ti, t) be the rotation number p(vS)|Ti
with respect to the

trivialization t as we go around Ti. Moreover, define

r(S, t) :=
k∑

i=1

r(Ti, t).

Suppose T1, . . . , Tk intersect γ transversely. Define

c(S, t) = χ(S) − 1

2
|∂S ∩ γ | − r(S, t). (4.1)

Remark 4.6. The original definition of c(S, t) in [30, Section 3] involves the index I(S),

which is equal to 1
2 |∂S ∩ γ | when T1, . . . , Tk intersect γ transversely (cf. [30, Lemma 3.9]).

Suppose tS is the trivialization of v⊥
0 induced by p(vS)|∂S. Then for any v⊥ with

v⊥|∂M = v⊥
0 and any trivialization t of v⊥

0 , we have

〈c1(v⊥, tS) − c1(v⊥, t), [S]〉 = r(S, t) (4.2)

(cf. Proof of [30, Lemma 3.10]; see also [31, Lemma 3.11]). In particular, we have r(S, tS) =
0.

Definition 4.7. Consider the construction as above. Define

SFH(M, γ , S, i) :=
⊕

s∈Spinc(M,γ )
〈c1(s,tS),[S]〉=−2i

SFH(M, γ , s). (4.3)
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40 Z. Li and F. Ye

Remark 4.8. The minus sign of (2i) is to make this definition parallel to the Z-grading

on SHG(M, γ ) associated to S. See the proofs of the following propositions.

Proposition 4.9. The decomposition in Definition 4.7 satisfies properties in Theorem

2.4, replacing SHG by SFH.

Proof. Term (1) follows from the adjunction inequality in [31, Theorem 2]. Note that if

2i = |∂S ∩ γ | − χ(S), then for s corresponds to SFH(M, γ , S, i), we have

〈c1(s, tS), [S]〉 = χ(S) − |∂S ∩ γ | = c(S, tS), (4.4)

where the last equality follows from (4.1) and (4.2).

Term (2) follows from [30, Lemma 3.10] and (4.4).

Terms (3)–(5) follow from definitions and symmetry on balanced diagrams. �

Proposition 4.10. Consider the stabilized surfaces Sp and Sp+2k in Theorem 2.8. Then

for any l ∈ Z, we have

SFH(M, γ , Sp, l) = SFH(M, γ , Sp+2k, l + k).

Proof. Suppose S+ and S− are positive and negative stabilizations of S. Since the

stabilization operation is local, we have the following equation by direct calculation

r(S+, t) = r(S, t) − 1

for any trivialization t of v⊥
0 ; see Figure 9.

Note that [S+] = [S]. Hence for s ∈ Spinc(M, γ ) corresponds to SFH(M, γ , S, i), we

have

〈c1(s, tS+), [S+]〉 = 〈c1(s, tS), [S+]〉 + r(S+, tS)

= 〈c1(s, tS), [S+]〉 + r(S, tS) − 1

= 〈c1(s, tS), [S+]〉 − 1

= 〈c1(s, tS), [S]〉 − 1

= −2i − 1.

Applying this calculation for (2k) times gives the desired result. �
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An Enhanced Euler Characteristic 41

Fig. 9. Left subfigure, the positive stabilization S+ and the vector vS+ , where intM is inside the

page. Right top subfigure, the vector field v0 and the plane field v⊥
0 from another viewpoint. Right

middle subfigure, the orientation of v⊥
0 , where v0 points out the page. Right bottom subfigures,

the projections of vS+ on v⊥
0 on given points.

Proposition 4.11. Suppose S1 and S2 are two admissible surfaces in (M, γ ) such that

[S1] = [S2] = α ∈ H2(M, ∂M).

Then there exists a constant C so that

SHG(M, γ , S1, l) = SHG(M, γ , S2, l + C).

Proof. This follows directly from the definition. �

4.2 Euler characteristics

Then we can consider the Euler characteristic of SFH with respect to spinc structures.

Definition 4.12 (). For a balanced sutured manifold (M, γ ), let the Z2 grading of

SFH(M, γ ) be induced by the sign of intersection points of Tα and Tβ for some compatible

diagram H = (�, α, β) (cf. [18, Section 3.4]). Suppose H = H1(M) and choose any

s0 ∈ Spinc(M, γ ). The Euler characteristic of SFH(M, γ ) is

χ(SFH(M, γ )) :=
∑

s∈Spinc(M,γ )

s−s0=h∈H2(M,∂M)

χ(SFH(M, γ , s)) · PD(h) ∈ Z[H]/ ± H,

where PD : H2(M, ∂M) → H1(M) is the Poincaré duality map.
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42 Z. Li and F. Ye

Theorem 4.13 ([18]). Suppose (M, γ ) is a balanced sutured manifold. Then

χ(SFH(M, γ )) = τ(M, γ ),

where τ(M, γ ) is a (Turaev-type) torsion element computed from the map

π1(R−(γ )) → π1(M)

by Fox calculus. In particular, if (M, γ ) = (Y(K), γK) for a knot K in Y, then

τ(M, γ ) = (1 − [m])τ (Y(K)),

where m is the meridian of K and τ(Y(K)) is the Turaev torsion defined in [60].

4.3 Surgery exact triangle

Suppose (M, γ ) is a balanced sutured manifold and K is a knot in M. Consider three

balanced sutured manifolds (Mi, γi) for i = 1, 2, 3 obtained from (M, γ ) by Dehn surgeries

along K. If the Dehn filling curves η1, η2, η3 ⊂ ∂(M\int∂N(K)) satisfy

η1 · η2 = η2 · η3 = η3 · η1 = −1,

then we have the following exact triangle for twisted sutured homology from the surgery

exact triangle in the closure of (Mi, γi)

(4.5)

In this subsection, we show the exact triangle (4.5) is also true when replacing

SHG by SFH.

First, we quickly review Juhász’s construction of the cobordism map associated

to a Dehn surgery (cf. [32, Section 6], see also [52] for Dehn surgeries on closed 3-

manifolds).

For simplicity, suppose η1 is the meridian of K. Choose an arc a connecting K

to R+(γ ). We can construct a sutured triple diagram (�, α, β, δ) satisfying the following

properties.
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An Enhanced Euler Characteristic 43

(1) |α| = |β| = |γ | = d.

(2) (�, α, {β2, . . . , βd}) is a diagram of (M ′, γ ′) = (M\N(K ∪ a), γ ).

(3) δ2, . . . , δd are obtained from β2, . . . , βd by small isotopy, respectively.

(4) After compressing � along β2, . . . , βd, the induced curves β1 and δ1 lie in the

punctured torus ∂N(K)\N(a).

(5) β1 represents the meridian η1 of K and δ1 represents the curve η2. In

particular, β1 intersects δ1 transversely at one point.

Then we can construct a 4-manifold Wα,β,δ associated to (�, α, β, δ) such that it

is a cobordism from (M, γ ) = (M1, γ1) to

(M2, γ2) � (R+ × I × ∂R+ × I)#d−n(S2 × S1),

where R+ = R+(γ ) and different copies of S2 × S1 might be summed along different

components of R+ × I.

Choose a top dimensional generator �β,δ of

SFH(R+ × I × ∂R+ × I)#d−n(S2 × S1) ∼= �∗H1(#d−n(S2 × S1)).

Note that (�, α, β) is a balanced diagram of (M1, γ1) and (�, α, δ) is a balanced diagram

of (M2, γ2). There is a map

Fα,β,γ : SFH(�, α, β) ⊗ SFH(�, β, δ) → SFH(�, α, δ)

obtained by counting holomorphic triangles in (�, α, β, δ). Then define the cobordism

map as

F1 : SFH(M1, γ1) → SFH(M2, γ2)

F1(x) = Fα,β,δ(x, �β,δ).

Similarly, we can define the cobordism maps F2 and F3.

Theorem 4.14 (Surgery exact triangle). Consider (Mi, γi) and cobordism maps Fi for i =
1, 2, 3 as above. Then we have an exact triangle

(4.6)
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44 Z. Li and F. Ye

Proof. The proof follows the proof of [49, Theorem 9.12] without essential changes

(see also [51, 53]). Since the cobordism maps Fi are well-defined on SFH, we can verify

the exact triangle for any diagram. We can construct a diagram (�, α, β, δ, ζ ) such that

(�, α, β, δ) defines F1, (�, α, δ, ζ ) defines F2, and (�, α, ζ , β) defines F3. Then we can

verify the assumptions of the triangle detection lemma [51, Lemma 4.2] by counting

holomorphic squares and pentagons and then this lemma induces the desired exact

triangle. �

4.4 Contact handles and bypasses

Suppose (M, γ ) ⊂ (M ′, γ ′) is a proper inclusion of balanced sutured manifolds and

suppose ξ is a contact structure on M ′\intM with dividing sets γ ′ ∪ (−γ ). Honda, Kazez,

and Matić [28] defined a map

�ξ : SFH(M, γ ) → SFH(M ′, γ ′),

which is indeed the motivation of Baldwin and Sivek’s construction in Subsection 2.2.

Originally, this map is defined by partial open book decompositions, and

there are some technical conditions. Juhász and Zemke [34] provided an alternative

description of this map by contact handle decompositions. Their description is explicit

on balanced diagrams of sutured manifolds. We will follow this alternative definition

and describe the maps for contact 1- and 2-handle attachments.

It is also worth mentioning that Zarev [67] defined a gluing operation for sutured

manifolds and conjectured the map associated to contact structures above can be

recovered by the gluing operation. This was proved by Leigon and Salmoiraghi [38].

Juhász and Zemke’s construction can be shown in Figure 10 and Figure 11 ([34,

Figure 1.1]). Note that for all maps associated to contact structures, we should reverse

the orientations of the manifold and the suture.

Let (�, α, β) be a balanced diagram compatible with (M, γ ). Then (−�, α, β) is

a balanced diagram compatible with (−M, −γ ). Attaching a (3-dimensional) contact 1-

handle along D+ and D− corresponds to attaching a 2-dimensional 1-handle along D+∩γ

and D− ∩ γ in ∂�. This operation does not change the sutured Floer chain complex and

we define Ch1 = Ch1,D+,D− as the tautological map on intersection points.

For a contact 2-handle attachment along μ ⊂ ∂M, note that |μ ∩ γ | = 2. Suppose

λ+ and λ− are arcs corresponding to μ∩R+(γ ) and μ∩R−(γ ), respectively. After isotopy,

we can suppose λ+ and λ− are properly embedded arcs on �. We glue a 2-dimensional

1-handle h along ∂� to obtain �′, and construct two curves α0 and β0 that intersect at
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An Enhanced Euler Characteristic 45

Fig. 10. Contact 1-handle.

Fig. 11. Contact 2-handle.

one point c in H, and such that

α0 ∩ � = λ+, β0 ∩ � = λ−.

Consider the balanced diagram (�′, α ∪ {α0}, β ∪ {β0}) and define the map associated to

the contact 2-handle attachment as

Ch2(x) = Ch2,μ(x) := x × {c}

for any x ∈ Tα ∩ Tβ .
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46 Z. Li and F. Ye

Since a bypass attachment can be regarded as a composition of a contact 1-

handle and 2-handle attachment (cf. Subsection 2.2), we can define the bypass map by

Ch2 ◦ Ch1 .

Honda [25] proposed an exact triangle associated to bypass maps for SFH, which

is indeed the motivation of the bypass exact triangle in Theorem 2.12. A proof of the

exact triangle based on bordered sutured Floer homology was provided by Etnyre, Vela-

Vick, and Zarev [17].

Theorem 4.15 (Bypass exact triangle, [17, Section 6]). Suppose (M, γ1), (M, γ2), (M, γ3)

are balanced sutured manifolds such that the underlying 3-manifolds are the same, and

the sutures γ1, γ2, and γ3 only differ in a disk shown in Figure 5. Then there exists an

exact triangle

where ψ1, ψ2, ψ3 are bypass maps associated to the corresponding bypass arcs.

From Juhász and Zemke’s description of contact gluing maps, it is obvious that

the maps respect the decomposition of SFH by spinc structures. We describe this fact

explicitly as follows.

Lemma 4.16. Suppose (M, γ ) is a balanced sutured manifold and suppose (M ′, γ ′) is

the resulting sutured manifold after either a contact 1-handle or 2-handle attachment.

For any spinc structure s ∈ Spinc(−M, −γ ), suppose s′ ∈ Spinc(−M ′, −γ ′) is its extension

corresponding to handle attachments. Then we have

Chi(SFH(−M, −γ , s)) ⊂ SFH(−M ′, −γ ′, s′),

where i ∈ {1, 2}.

Proof. We prove the claim on the chain level. After fixing a spinc structure s0

on (M, γ ), we can identify Spinc(M, γ ) with H2(M, ∂M) ∼= H1(M). Moreover, we can

represent the difference of two spinc structures by a one-cycle in Proposition 4.3.
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An Enhanced Euler Characteristic 47

We can extend s0 to a spinc structure s′
0 on (M, γ ) and identify Spinc(M ′, γ ′) with

H1(M ′). The inclusion i : M → M ′ induces a map

i∗ : H1(M) → H1(M ′).

For any x, y ∈ Tα ∩Tβ , the one cycle γx − γy defined in Proposition 4.3 lies in the

interior of M.

For a contact 1-handle, since the associated map Ch1 is tautological on inter-

section points, the homology class i∗([γx − γy ]) characterizes the difference of spinc

structures on (M ′, γ ′) for x and y.

For a contact 2-handle, since γx×{c} is the union of multi-trajectory γx and the

trajectory associated to c, we have

[γx×{c} − γy×{c}] = i∗([γx − γy ]).

This implies the desired proposition. �

Remark 4.17. The reader can compare Lemma 4.16 with Lemma 3.9. Note that when

H1(M) has torsions, preserving the spinc structures is stronger than preserving the

gradings associated to an admissible surface.

Corollary 4.18. Suppose α is a bypass arc on a balanced sutured manifold (M, γ ).

Suppose (M, γ ′) is the resulting manifold after the bypass attachment along α. Then

the bypass map ψα for SFH respects spinc structures, that is, for any s ∈ Spinc(M, γ )

and its extension s′ ∈ Spinc(M, γ ′), we have

ψα(SFH(−M, −γ , s)) ⊂ SFH(−M, −γ ′, s′).

Proof. This follows directly from Lemma 4.16 by the fact that a bypass attachment is

a composition of a contact 1-handle and 2-handle attachment. �

Remark 4.19. By Corollary 4.18, if we consider the Z-grading associated to an

admissible surface S in Subsection 4.7, then the bypass exact triangle in Theorem 4.15

satisfies the similar grading shifting property to that in Lemma 3.3.

For twisted sutured homology, the map associated to a contact 2-handle is

defined by the composition of the inverse of a contact 1-handle map and the cobordism

map of a 0-surgery. The following proposition shows that we can define the map Ch2 for

SFH in the same way.
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48 Z. Li and F. Ye

Lemma 4.20 ([22]). Suppose (M, γ ) is a balanced sutured manifold and (M ′, γ ′) is the

resulting sutured manifold after a contact 2-handle attachment along μ ⊂ ∂M. Let μ′ be

the framed knot obtained by pushing μ into the interior of M slightly, with the framing

induced from ∂M. Suppose (N, γN) is the sutured manifold obtained from (M, γ ) by a

0-surgery along μ′. Let

Fμ′ : SFH(−M, −γ ) → SFH(−N, −γN)

be the associated map. Let D ⊂ N be the product disk that is the union of the annulus

bounded by μ ∪ μ′ and the meridian disk of the filling solid torus. Let

CD : SFH(−N, −γN) → SFH(−M ′, −γ ′)

be the map associated to the decomposition along D (i.e., the inverse of a contact 1-

handle map). Then we have

Ch2,μ = CD ◦ Fμ′ : SFH(−M, −γ ) → SFH(−M ′, −γ ′).

Proof. Since all maps are well-defined on SFH, we can verify the claim by any diagram.

Suppose (�, α, β) is a balanced diagram compatible with (M, γ ). We note that the map

associated to the 0-surgery along μ′ may be achieved by first performing a compound

stabilization and then computing a triangle map. The resulting diagram leaves an extra

band that is deleted by CD. By [50, Theorem 9.4], the claim then follows from a model

computation in the stabilization region, as shown in Figure 12. �

Combining the surgery exact triangle in Theorem 4.14 with Lemma 4.20, we

obtain similar results in Lemma 3.6 for SFH.

Proposition 4.21. Consider the setups in Subsection 3.1. Suppose T ′ = T\α = T2 ∪ · · · ∪
Tm. Then for any n ∈ N, there is an exact triangle

(4.7)
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An Enhanced Euler Characteristic 49

Fig. 12. Realizing the contact 2-handle map (bottom-most long arrow) as a composition of a

compound stabilization (top), followed by a 4-dimensional 2-handle map (middle left), followed

by a product disk map (middle right). A holomorphic triangle of the 2-handle map is indicated in

the top subfigure.

The map Fn+1 is induced by the contact 2-handle attachment along the meridian of α.

Furthermore, we have commutative diagrams related to ψn+,n+1 and ψn−,n+1, respectively

and

Proof. It follows from the proof of Lemma 3.6. �
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50 Z. Li and F. Ye

5 Proof of Main Theorems

In this section, we prove Theorem 1.1 and Theorem 1.3 in the introduction.

Theorem 5.1 (Theorem 1.1). Suppose (M, γ ) is a balanced sutured manifold. Suppose

H = H1(M) and consider the (Turaev-type) torsion element τ(−M, −γ ) in Theorem 4.13.

Then we have

χen(SHG(−M, −γ )) = χ(SFH(−M, −γ )) = τ(−M, −γ ) ∈ Z[H]/ ± H.

Proof. By Theorem 4.13, it suffices to prove the first equation.

First, we consider the case that (M, γ ) is strongly balanced. By discussion in

Subsection 4.1, we can construct a Z-grading on SFH associated to an admissible surface

S ⊂ (M, γ ). By discussion in Section 4, this Z-grading also satisfies properties in

Subsection 3.1 for the Z-grading on SHG associated to S. Hence, for a vertical tangle T

satisfies the conditions in Definition 3.23, we can define a vector space SFHT(−M, −γ )

similar to SHGT(−M, −γ ) in Definition 3.23. Note that for any h1 ∈ H1(M), the summand

of SFHT(−M, −γ ) is

SFH(−MT , −γT , S , −i ′)

with j(ρ−i ′
) = h, where S , ρ, i ′ come from Definition 3.26, the gradings come from

Definition 4.7, and j : H1(MT) → H1(M) is the map induced by inclusion.

Similar to Proposition 3.25, there is an isomorphism

SFHT(−M, −γ ) ∼= SFH(−M, −γ ). (5.1)

Moreover, by the proofs of Lemma 3.6 and Proposition 3.17, the isomorphism in (5.1) is

induced by contact 2-handle attachments along meridians of tangle components of T.

Hence, by Lemma 4.16, the isomorphism in (5.1) respects spinc structures. This implies

that there exists s0 ∈ Spinc(−M, −γ ), such that for any h ∈ H1(M), the summand of

SFHT(−M, −γ ) corresponding to h is isomorphic to SFH(−M, −γ , s0 + h). In particular,

we have

χen(SFH(−M, −γ )) := j∗(χ(SFHT(−M, −γ )) = χ(SFH(−M, −γ )) ∈ Z[H]/ ± H,

where j∗ : Z[H1(MT)] → Z[H1(M)].
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An Enhanced Euler Characteristic 51

By definition, the vector spaces SFHT(−M, −γ ) and SHGT(−M, −γ ) are direct

summands of SFH(−MT , −�) and SHG(−MT , −�) for some � ⊂ ∂MT , respectively. By

Lemma 3.20, the group H1(MT) has no torsion. Hence, by (1.6), we have

χgr(SHGT(−M, −γ )) = χgr(SFHT(−M, −γ ))

= χ(SFHT(−M, −γ )) ∈ Z[H1(MT)]/ ± H1(MT).

Thus, we have

χen(SHG(−M, −γ )) = j∗(χgr(SHGT(−M, −γ )))

= χen(SFH(−M, −γ ))

= χ(SFH(−M, −γ )) ∈ Z[H]/ ± H.

Then we consider the case that (M, γ ) is not strongly balanced. As mentioned in

Remark 4.5. If ∂M is not connected, we can construct a sutured manifold (M ′, γ ′) with

connected boundary by attaching contact 1-handles (cf. [30, Remark 3.6]). The product

disks in (M ′, γ ′) corresponding to these 1-handles are admissible surfaces, and only one

summand in the associated Z-grading is nontrivial. Hence, there is a canonical way

to consider χen(SHG(−M ′, −γ ′)) as an element in Z[H1(M)]/ ± H1(M). We can consider

(−M ′, −γ ′) instead, and the above arguments about strongly balanced sutured manifolds

apply to this case. �

Proof of Theorem 1.3. We prove the theorem for (−M, −γ ), and it suffices to prove

the case that (M, γ ) is strongly balanced. Consider the construction of SFHT(−M, −γ )

in the proof of Theorem 5.1. We denote the monopole version of SHGT(−M, −γ ) by

SHMT(−M, −γ ) and use it to provide a decomposition of SHM(−M, −γ ).

By definition, the vector spaces SFHT(−M, −γ ) and SHMT(−M, −γ ) are direct

summands of SFH(−MT , −�) and SHM(−MT , −�) for some � ⊂ ∂MT . By Lemma 3.20, the

group H1(MT) has no torsion. Hence, it suffices to prove the theorem for (−MT , −�).

We have

SHM(−MT , −�) ∼= SHM(−MT , −�) ∼= SFH(−MT , −�) ⊗ �

with respect to the H1(MT)-grading induced by spinc structures or admissible surfaces,

where � is the Novikov ring over Z2. The first isomorphism comes from the construction

of SHM and SHM. The second isomorphism follows from [11, Theorem 3.1], which
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52 Z. Li and F. Ye

essentially depends on the isomorphism between ˇHM• and HF+ for closed 3-manifolds

(cf. [15, 37, 59]). The grading in the above isomorphism was discussed in [42, Corollary

3.42]. �

6 Knots With Small Instanton Knot Homology

In this section, we prove detection results about ĤFK and KHI for null-homologous

knots inside L-spaces.

6.1 Restrictions on Euler characteristics

In this subsection, we provide restrictions on Euler characteristics of ĤFK and KHI.

Since there is a canonical isomorphism between ĤFK(Y, K) and SFH(Y(K), γK), we do

not distinguish them later.

Suppose (M, γ ) is a balanced sutured manifold and H = H1(M;Z). In

Definition 4.12, the Euler characteristic χ(SFH(M, γ )) has an ambiguity of ±H. When

M = Y(K) for a knot K in a rational homology sphere Y, we have ∂M ∼= T2. We can

resolve the ambiguity of ±H as follows.

First, we resolve the sign ambiguity. Under the map Z[H] → Z[H1(Y)] induced by

inclusion, the Euler characteristic χ(SFH(M, γ )) becomes

±
∑

h∈H1(Y)

h

by Theorem 4.13. Hence, we can fix the sign by choosing the one whose image is the

positive one.

Then we resolve the ambiguity of H. We write Spinc(Y, K) for Spinc(Y(K), γK).

First, there is a natural identification

SFH(Y(K), γK)
∼=−→ SFH(Y(K), −γK),

where −γK corresponds to −K, the knot obtained from K by reversing the orientation.

Second, since ∂Y(K) ∼= T2, the suture −γK is isotopic to the suture γ , we have a map

ι : SFH(Y(K), γK)
∼=−→ SFH(Y(K), −γK)

=−→ SFH(Y(K), γ ).

The square of this map is related to the basepoint moving map in [58, 68], though we do

not use this fact.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/advance-article/doi/10.1093/im
rn/rnad066/7109230 by Peking U

niversity user on 30 N
ovem

ber 2023



An Enhanced Euler Characteristic 53

If there is a spinc structure s ∈ Spinc(Y, K) so that ĤFK(Y, K, s) that is invariant

under ι, then choose s0 in Definition 4.12 so that

PD(s − t0) = e,

where e ∈ H is the identify element. If there is no summand that is invariant under ι,

and suppose

ι(ĤFK(Y, K, s)) = ĤFK(Y, K, s′)

for some s, s′ ∈ Spinc(Y, K), then we define χ(ĤFK(Y, K)) as an element in (1
2Z)[H] so that

the group elements corresponding to ĤFK(Y, K, s) and ĤFK(Y, K, s′) are inverse elements.

In particular, if H ∼= Z, then (1
2Z)[H] ∼= Z[t

1
2 , t− 1

2 ]. Note that this definition is independent

of the choices of s, s′.

Definition 6.1. Suppose K is a knot in a rational homology sphere Y and Suppose

H = H1(Y(K)). When fixing the Z2-grading and the spinc grading as above, the space

ĤFK(Y, K) is called the canonical representative. The corresponding spinc grading is

called the absolute Alexander grading. For the canonical representative of ĤFK(Y, K),

the Euler characteristic χ(ĤFK(Y, K)) is a well-defined element in Z[H] or (1
2Z)[H]. For

s ∈ Spinc(Y), define ĤFK(Y, K, [s]) as the direct summand of all ĤFK(Y, K, s′) with

s′ ∈ Spinc(Y, K) and s′ extends to s on Y. Then χ(ĤFK(Y, K, s)) is also a well-defined

element in Z[H] or (1
2Z)[H].

Then we can state the main theorem of this subsection.

Theorem 6.2. Suppose K1 and K2 be two knots in a rational homology sphere Y with

[K1] = [K2] ∈ H1(Y). For i = 1, 2, suppose mi is the meridian of Ki. Then there exists

an isomorphism φ : H1(Y(K1);Z) ∼= H1(Y(K2);Z) so that φ([m1]) = [m2]. Using the

isomorphism φ, we write H1(Y(Ki);Z) as H and write [mi] as [m] ∈ H.

Consider the canonical representative of ĤFK(Y, Ki). Then for any s ∈ Spinc(Y),

there exists a Laurent polynomial fs(x) ∈ Z[x, x−1] and an element hs ∈ H such that

χ(ĤFK(Y, K1, [s])) − χ(ĤFK(Y, K2, [s])) = ([m] − 1)2fs([m])hs,

where both sides are elements in Z[H] or (1
2Z)[H].
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54 Z. Li and F. Ye

Note that Theorem 6.2 is a generalization of [66, Theorem 5.8]. Indeed, the

proof of [66, Theorem 5.8] applies without essential change. In the following, we prove

generalizations of lemmas in [66, Section 5] and then sketch the proof of Theorem 6.2.

Lemma 6.3. Suppose K1 and K2 be two knots in a rational homology sphere Y with

[K1] = [K2] ∈ H1(Y). Then there exists an isomorphism φ : H1(Y(K1);Z) ∼= H1(Y(K2);Z) so

that φ([m1]) = [m2].

Proof. For a manifold M, let T1(M) be the torsion subgroup of H1(M) and let B1(M) =
H1(M)/T1(M). By [14, Theorem 3.1], since [K1] = [K2] ∈ H1(Y), there is a subgroup B of

B1(Y(K1 ∪ K2) so that for i = 1, 2, the map

ji : B1(Y(K1 ∪ K2)) → B1(Y(Ki))

induced by the injection is an isomorphism on B. Moreover, the map

ki : T1(Y(K1 ∪ K2)) → T1(Y(Ki))

induced by injection is an isomorphism. Since H1(M) ∼= B1(M) ⊕ T1(M) for any manifold

M, we have an isomorphism

φ0 = (j2 ◦ j−1
1 , k2 ◦ k−1

1 ) : H1(Y(K1)) ∼= B1(Y(K1)) ⊕ T1(Y(K1))

∼= B1(Y(K2)) ⊕ T1(Y(K2)) ∼= H1(Y(K2)).

Moreover, if

li : H1(Y(Ki)) → H1(Y)

is the map induced by injection, then l1 = φ0 ◦ l2.

For i = 1, 2, consider the long exact sequence about the pair (Y, N(Ki)):

H1(Y) → H1(N(Ki)) → H2(Y, N(Ki)) → H2(Y) → H2(Ki) = 0.

Since Y is a rational homology sphere,

H1(Y) ∼= Hom
Z
(H1(Y),Z) = 0.
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An Enhanced Euler Characteristic 55

By excision theorem and the Poincaré duality, we have

H2(Y, N(Ki))
∼= H2(Y(Ki), ∂Y(Ki))

∼= H1(Y(Ki)) and H2(Y) ∼= H1(Y).

Under the Poincaré duality, the image of

H1(N(Ki))
∼= H1(N(Ki), ∂N(Ki))

∼= Z

in H1(Y(Ki)) is [mi]. Since l1 = φ ◦ l2, we have the following commutative diagram

Hence, φ0([m1]) = [m2]±1. If φ0([m1]) = [m2], let φ = φ0. If φ0([m1]) = [m2]−1, let φ =
φ0 ◦ ε, where ε maps an element to its inverse. Then φ : H1(Y(K1)) → H1(Y(K2)) is an

isomorphism and φ([m1]) = ([m2]). �

Lemma 6.4. Suppose G is an abelian group and g0 is an element in G. The quotient map

G → G/(g0) induces a map on the group ring

pr : Z[G] → Z[G/(g0)].

Then the kernel of pr is generated by 1 − g0.

Proof. We can regard element in Z[G] as a function f : G → Z that maps g ∈ G to the

coefficient of g. Note that f (g) �= 0 for finitely many g. If f ∈ ker(pr), then

h(g) =
∑
k∈N

f (gg−k
0 )

is also a function G → Z that is nonvanishing for finitely many g. It is straightforward

to check that h = (1 − g0)f as elements in Z[G]. �
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56 Z. Li and F. Ye

Proof of Theorem 6.2. The first part of this theorem is just Lemma 6.3. Write H =
H1(Y(Ki)) and [m] = [mi]. By Theorem 4.13, we have

χ(ĤFK(Y, Ki)) = (1 − [m])τ (Ki) in Z[H] or (
1

2
Z)[H].

A priori, the Turaev torsion τ(Y(Ki)) is not in Z[H], but the difference τ(Y(K1))−τ(Y(K2))

is. By Lemma 6.4, we can apply the proof of [66, Lemma 5.5] to the case where Y is a

rational homology sphere. Note that we use the fact b1(Y(Ki)) = 1 in that proof. From

[66, Lemma 5.5], we have

τ(Y(K1)) − τ(Y(K2)) = (1 − [m])g in Z[H] or (
1

2
Z)[H] for someg ∈ Z[H].

The ambiguity of ±H in the statement of [66, Lemma 5.5] is resolved because we consider

absolute Alexander gradings on ĤFK(Y, Ki). Then we have

χ(ĤFK(Y, K1)) − χ(ĤFK(Y, K2)) = (1 − [m])(τ (Y(K1)) − τ(Y(K2))) = (1 − [m])2g. (6.1)

Suppose H1(Y;Z) = {s1, . . . , sp}. Then the element g can be written as the sum

g =
p∑

j=1

gj,

where gj contains terms that are in the preimage of sj ∈ H1(Y;Z) under the map

H → H/m ∼= H1(Y;Z).

For any j, there exists a Laurent polynomial fj(x) and an element s̃j ∈ H such that

gj = fj([m])s̃j. Since Spinc(Y) is an affine space on H1(Y). Thus, Equation (6.1) can be

decomposed with respect to Spinc(Y), where hs corresponds to some s̃j. �

Finally, we deal with instanton knot homology.

Definition 6.5. Suppose K is a knot in a rational homology sphere Y and suppose H =
H1(Y(K)). Similar to the way for ĤFK(Y, K), we can fix the Z2-grading and the H-grading

from the enhanced Euler characteristic on KHI(Y, K). When gradings are fixed, the space

KHI(Y, K) is called also the canonical representative and the corresponding H-grading

is also called the absolute Alexander grading. For any element s ∈ H1(Y), let [s] ⊂
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An Enhanced Euler Characteristic 57

H1(Y(K)) be the set of preimages of s under the map H → H1(Y) and define

KHI(Y, K, [s]) :=
⊕
h∈[s]

KHI(Y, K, h).

Then χ(KHI(Y, K, [s]) is also a well-defined element in Z[H] or (1
2Z)[H].

By Theorem 6.2 and Equation (1.1), we have the following corollary.

Corollary 6.6. Suppose K1 and K2 be two knots in a rational homology sphere Y with

[K1] = [K2] ∈ H1(Y). For i = 1, 2, suppose mi is the meridian of Ki. Using the isomorphism

φ in Lemma 6.3, we write H1(Y(Ki);Z) as H and write [mi] as [m] ∈ H.

Consider the canonical representative of KHI(Y, Ki). Then for any s ∈ H1(Y),

there exists a Laurent polynomial fs(x) ∈ Z[x, x−1] and an element hs ∈ H such that

χ(KHI(Y, K1, [s])) − χ(KHI(Y, K2, [s])) = ([m] − 1)2fs([m])hs,

where both sides are elements in Z[H] or (1
2Z)[H].

6.2 Detection results

In this subsection, we use Theorem 6.2 and Corollary 6.6 to prove detection results in

the introduction.

Convention. Throughout this subsection, we suppose K is a knot in a rational

homology sphere Y and suppose H = H1(Y(K)). Moreover, we consider canonical

representatives of ĤFK(Y, K) and KHI(Y, K) as in Definition 6.1 and Definition 6.5. For

simplicity, we write also write (1
2Z)[H] as Z[H].

First, we prove some lemmas.

Lemma 6.7 (). Suppose K ⊂ Y is a knot so that [K] = 0 ∈ H1(Y). Then there exists a

canonical isomorphism

H1(Y(K)) ∼= Z ⊕ H1(Y),

where the meridian of K represents the generator of Z.

Proof. The isomorphism is induced by pairing with a Seifert surface of K. �
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58 Z. Li and F. Ye

Hence we can write elements in H1(Y(K)) as [m]n · s for s ∈ H1(Y) and n ∈ Z.

Lemma 6.8. Suppose Y is an instanton L-space and U ⊂ Y is the unknot. Then for any

s ∈ H1(Y), we have

KHI(Y, U, [s]) ∼= C and χ(KHI(Y, U, [s])) = s ∈ Z[H].

Proof. The result KHI(Y, U, [s]) ∼= C follows directly from Equation (1.1) and the

following isomorphisms:

KHI(Y, U) ∼= I�(Y) ∼= C|H1(Y)|.

The result χ(KHI(Y, U, [s])) = 1 follows from the fact that g(U) = 0 and KHI detects the

genus of the knot [36, Proposition 7.16]. �

Lemma 6.9. Suppose Y is an instanton L-space, and K ⊂ Y is a knot so that [K] = 0 ∈
H1(Y). Suppose m is the meridian of K. Then for any s ∈ H1(Y), the element

χ(KHI(Y, K, [s])) − s ∈ Z[H]

has a factor ([m] − 1)2. See Definition 6.5 for the definition of χ(KHI(Y, K, [s])).

Proof. Since the unknot is also null-homologous, this lemma follows directly from

Corollary 6.6 and Lemma 6.8. �

Then we prove the detect results in the introduction.

Proof of Theorem 1.5. It is clear that

dimC KHI(Y, K) = dimC I�(Y)

when K is the unknot in Y. Now suppose

dimC KHI(Y, K) = dimC I�(Y)

and we will show that K must be the unknot. For any s ∈ H1(Y), Lemma 6.9 implies that

χ(KHI(Y, K, [s])) �= 0
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An Enhanced Euler Characteristic 59

and hence KHI(Y, K, [s]) �= 0. From the assumption, we have

dim
C

KHI(Y, K) = dim
C

I�(Y) = |H1(Y)|.

Thus, we must have

KHI(Y, K, [s]) ∼= C and χ(KHI(Y, K, [s])) = [m]n · s ∈ Z[H],

where m is the meridian of K and n is some integer. Applying Lemma 6.9 again, we know

that n must be 0. Since KHI detects the genus of the knot [36, Proposition 7.16], we know

that g(K) = 0, which implies K is the unknot. �

Proof of Theorem 1.8. Applying Lemma 6.9, for any s ∈ H1(Y), we have

χ(KHI(Y, K, [s])) �= 0.

Since χ(KHI(Y, K, [s])) and dim
C

KHI(Y, K, [s]) have the same parity, we conclude that

there exists s0 ∈ H1(Y) so that

KHI(Y, K, [s0]) ∼= C3

and for any s �= s0,

KHI(Y, K, [s]) ∼= C

Applying Lemma 6.9 again, for any s �= s0, we know that

χ(KHI(Y, K, [s])) = s ∈ Z[H].

For s0, we know that

χ(KHI(Y, K, [s0])) − s0 ∈ Z[H]

has a factor ([m] − 1)2 and

‖χ(KHI(Y, K, [s0]))‖ ≤ 3,

where m is the meridian of K and the norm is defined before Example 1.4.

Hence, there are only two possibilities.
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Case 1. ‖χ(KHI(Y, K, [s0]))‖ = 1 and we then conclude that

χ(KHI(Y, K, [s0])) = [m]n · s0 ∈ Z[H].

Note that ‖χ(KHI(Y, K, [s0]))‖ = 1 implies that there is a 2-dimensional summand of

KHI(Y, K) whose Euler characteristic is zero. Hence there are further two cases:

Case 1.1 KHI(Y, K, [s0]) is supported in two different Alexander gradings. By

assumption, we know that KHI(Y, K, [s0]) has a 1-dimensional summand at the Alexan-

der grading n and has a 2-dimensional summand at the Alexander grading n′ for some

n′ �= n. This contradicts the fact that KHI(Y, K) is symmetric with respect to the

Alexander grading.

Case 1.2. KHI(Y, K, [s0]) is support solely in the Alexander grading n. By

symmetry of KHI(Y, K), we must have n = 0. Since KHI detects the genus of the knot, we

know K is an knot, which contradicts Theorem 1.5 since dimC KHI(Y, K) = dimC I�(Y)+2.

Case 2. ‖χ(KHI(Y, K, [s0]))‖ = 3. By symmetry on KHI(Y, K), there exists n ∈ N+so

that

χ(KHI(Y, K, [s0])) = ([m]n − 1 + [m]−n) · s0 ∈ Z[H].

by [36, Proposition 7.16 and Corollary 7.19], we know that K is fibred of genus n. By [12,

Theorem 1.7], we know that n = 1. Hence K is a genus-one-fibred knot. �

The proofs of the following theorems are similar to those of Theorem 1.5 and

Theorem 1.8, but using Theorem 6.2 and [13, Theorem 1.1] instead of Corollary 6.6 and

[12, Theorem 1.7].

Theorem 6.10. Suppose K is a null-homologous knot in a rational homology sphere Y.

If

dim
F2

ĤF(Y) = |H1(Y;Z)|, (6.2)

then K is the unknot if and only if

dim
F2

ĤFK(Y, K) = dim
F2

ĤF(Y). (6.3)

Theorem 6.11. Suppose K is a null-homologous knot in a rational homology sphere Y.

If

dim
F2

ĤFK(Y, K) = dim
F2

ĤF(Y) + 2 = |H1(Y;Z)| + 2, (6.4)

then K must be a genus-one-fibred knot.
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An Enhanced Euler Characteristic 61

Remark 6.12. Baldwin [4] classified L-spaces that contain null-homologous genus-

one-fibred knots. He also computed knot Floer homologies of such knots, which only

depend on their Alexander polynomials. The techniques in his classification involve the

minus chain complex [50] and the mapping cone formula [54, 55], which is not available

in instanton theory yet. For knots in lens spaces, there are more results about genus-

one-fibred knots [1, 3, 44].
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